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Abstract
Visual question answering (VQA) is a hallmark
of vision and language reasoning and a chal-
lenging task under the zero-shot setting. We
propose Plug-and-Play VQA (PNP-VQA), a
modular framework for zero-shot VQA. In con-
trast to most existing works, which require sub-
stantial adaptation of pretrained language mod-
els (PLMs) for the vision modality, PNP-VQA
requires no additional training of the PLMs.
Instead, we propose to use natural language
and network interpretation as an intermediate
representation that glues pretrained models to-
gether. We first generate question-guided in-
formative image captions, and pass the cap-
tions to a PLM as context for question answer-
ing. Surpassing end-to-end trained baselines,
PNP-VQA achieves state-of-the-art results on
zero-shot VQAv2 (Goyal et al., 2017) and
GQA (Hudson and Manning, 2019). With 11B
parameters, it outperforms the 80B-parameter
Flamingo model (Alayrac et al., 2022) by 8.5%
on VQAv2. With 738M PLM parameters, PNP-
VQA achieves an improvement of 9.1% on
GQA over FewVLM (Jin et al., 2022) with
740M PLM parameters.

1 Introduction

Recent years have witnessed unprecedented per-
formance gains on many natural language reason-
ing tasks, especially in zero-shot and few-shot set-
tings, being derived from scaling up pretrained
language models (PLMs) and their training data
(Devlin et al., 2019; Liu et al., 2019; Brown et al.,
2020; Raffel et al., 2020; Black et al., 2022; Sanh
et al., 2022; Wei et al., 2021). Inspired by their
success, a natural thought is that utilizing PLMs
should also boost zero-shot performance in vision-
language reasoning tasks.

However, to leverage PLMs for vision-language
tasks, most existing methods require non-trivial
adaptation of the PLMs for the vision modality,
which necessitates the design of new network com-
ponents and training objectives. For example, Sung

et al. (2022) and Alayrac et al. (2022) insert into
the PLMs new layers that are trained from scratch.
Tsimpoukelli et al. (2021) train vision encoders that
output soft prompts to frozen PLMs. Chen et al.
(2022) and Eichenberg et al. (2021) train both the
vision encoders and new layers inserted into PLMs.
In the zero-shot setting, various vision-language
pretraining objectives are employed, such as im-
age captioning (Alayrac et al., 2022) and image-
conditioned masked language modeling (Jin et al.,
2022).

From the perspective of general-purpose AI, the
ability to perform new tasks by simply recombining
large-scale pretrained models, or foundation mod-
els (Bommasani et al., 2021), without architectural
changes or extra training would be highly desirable.
Such a system would be able to dynamically adjust
to previously unknown tasks by simply rewiring
a small number of foundation models. However,
to obtain high performance without some form of
end-to-end training would seem difficult, if not im-
possible.

We present Plug-and-Play VQA (PNP-VQA), a
framework for zero-shot visual question answering
which conjoins large pretrained models with zero
additional training and achieves state-of-the-art per-
formance on zero-shot VQAv2 (Goyal et al., 2017)
and GQA (Hudson and Manning, 2019). For the
purpose of bridging the vision and language modali-
ties, we employ a pretrained vision-language model
(PVLM) (Li et al., 2022b) that describes visual in-
formation with textual captions. In order to obtain
relevant and informative captions, we apply a net-
work interpretability technique (Selvaraju et al.,
2017) to detect image patches that are relevant
to the question. After that, we generate captions
stochastically for these image patches. Finally, we
employ a PLM (Khashabi et al., 2022) to answer
the question from the captions.

Research in cognitive science and neuroscience
suggests that the human cognitive system is largely
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modular (Shettleworth, 2012; Bertolero et al.,
2015). For instance, the pioneering work of Fodor
(1983) argued that the low-level human cognition
is constituted of several fast, autonomous, and
domain-speci�c modules. For purely practical pur-
poses, a modular design of arti�cial general intelli-
gence would make it easy to harness rapid progress
in each individual component, as the components
can be individually replaced and updated without
affecting other parts of the system. With this paper,
we offer such a modular design for zero-shot VQA
that leverages recent advances in PLM and PVLMs
and combines them with an innovative application
of network interpretability.

We summarize our contributions as follows:

• We introducePNP-VQA, a modular framework
for zero-shot VQA without training. Its �exibility
allowsPNP-VQA to jointly evolve as pretrained
models continue to advance.

• Besides natural language, we propose the use of
network interpretation as the interface between
pretrained LMs and VLMs. With an interpretabil-
ity technique, we create image captions that ex-
tensively cover information relevant to the ques-
tion, which enable accurate QA.

• We demonstrate state-of-the-art zero-shot VQA
performance on multiple benchmarks. On
VQAv2, PNP-VQA11B obtains 8.5% im-
provement over Flamingo80B (Alayrac et al.,
2022), which applies extensive end-to-end VL-
pretraining. On GQA,PNP-VQAlarge outper-
forms FewVLMlarge (Jin et al., 2022) by 9.1%.

2 Related Work

Large-scale image-text pretrainingof neural net-
works is a popular research direction. Various
vision-language pretraining tasks have been pro-
posed, including image-conditioned language mod-
eling (Tsimpoukelli et al., 2021; Alayrac et al.,
2022), masked language modeling (Tan and Bansal,
2019; Lu et al., 2019; Li et al., 2021b), pre�x lan-
guage modeling (Wang et al., 2022), image-text
matching (Li et al., 2019; Chen et al., 2020; Li et al.,
2020) and image-text contrastive learning (Radford
et al., 2021; Jia et al., 2021; Li et al., 2021a). Af-
ter pretraining, several models exhibit zero-shot
capabilities in image-text retrieval (Jia et al., 2021;
Radford et al., 2021; Zeng et al., 2022b) and image
captioning (Wang et al., 2022; Li et al., 2022b).
However, zero-shot VQA remains a challenging

task due to its high requirement on the model's
reasoning ability.

Adapting PLMs for zero-shot VQA has shown
promising results. In order to incorporate vision
information into PLMs, most existing methods
perform additional vision-language training on
image-text data. Frozen (Tsimpoukelli et al., 2021)
trains the vision encoder while keeping the gigan-
tic PLM frozen to retain its knowledge in question
answering. The output from the vision encoder is
prepended to the text as prompts to the frozen lan-
guage model. FewVLM (Jin et al., 2022) �netunes
the PLM using the pre�x language modeling and
masked language modeling objectives. VLKD (Dai
et al., 2022) distills multimodal knowledge to PLM
by using CLIP (Radford et al., 2021) as the teacher
model during �netuning. Flamingo (Alayrac et al.,
2022) adds additional layers to both the pretrained
vision model and the PLM and trains the new layers
on billions of image-text pairs.

Different from the above work,PNP-VQA di-
rectly employs pretrained models with neither ar-
chitectural modi�cations nor additional training.

Most similar to our work, PICa (Yang et al.,
2022) converts an image to a single caption and
adopts GPT-3 (Brown et al., 2020) for zero-shot
VQA. In comparison,PNP-VQA generates multi-
ple question-guided captions and performs fusion
of captions after encoding to effectively utilize a
large number of captions, yielding considerable
performance gains.

An orthogonal research direction for zero-shot
VQA is to train the VLMs on synthetic VQA ex-
amples generated from captions (Changpinyo et al.,
2022; Banerjee et al., 2021).PNP-VQA does not
require additional training.

Natural language as an intermediate represen-
tation or interface between different models or
multiple steps of reasoning is an emerging machine
learning strategy. It dates back to at least Andreas
et al. (2018) and saw renewed interest in the past
few months due to the prevalence of large PLMs.
Andreas et al. (2018) and Vong and Lake (2022)
learn natural language descriptions that function as
few-shot classi�ers within an image-text matching
model. Bostrom et al. (2022) generate intermediate
reasoning steps with �netuned PLMs. Zhou et al.
(2022) prompt a PLM to generate subproblem de-
scriptions for a complex problem, and feed the sub-
problems back to the PLM to solve hierarchically.



Figure 1: The system architecture ofPNP-VQA, consisting of three pretrained modules: (1) an image-question
matching module that identi�es image patches relevant to the question, (2) an image captioning module that
generates a diverse set of captions, (3) a question answering module that generates an answer given the question and
captions. For the image-question matching module and image captioning module, we adopt BLIP (Li et al., 2022b).
For the question answering module, we adopt Uni�edQAv2 (Khashabi et al., 2022).

Wu et al. (2022) chain PLM outputs and inputs.
Zeng et al. (2022a) show that language-conjoined
LM and VLM successfully perform captioning and
retrieval but do not evaluate their models on VQA.
In comparison,PNP-VQA adopts both natural lan-
guage and network interpretation as the interface
between different pretrained models.

3 Method

The central idea of Plug-and-Play VQA (PNP-
VQA) is to establish an interface between a pre-
trained language model and a pretrained vision-
language model without training. We demonstrate
that natural language image captions and network
saliency maps together serve as an effective inter-
face. Ideally, the generated captions should thor-
oughly cover information that is present in the im-
age and be relevant to the question. We foster rel-
evance by identifying image patches most related
to the question with a saliency map-based inter-
pretability technique and generating captions from
these patches only. Further, we promote coverage
by injecting stochasticity, including random sam-
pling of relevant image patches and of the textual
tokens during caption generation.

The overall system architecture (Figure 1) con-
sists of three modules:

1. an image-question matching module that iden-
ti�es the relevant image patches given a ques-
tion,

2. an image captioning module that generates a
diverse set of captions from a set of image
patches, and

3. a question answering module that outputs an
answer given the question and the generated
captions.

In this section, we introduce the three modules
in detail.

3.1 Matching Image Patches and Questions

An image serves as a rich source of information,
but the question at hand is likely focused only on
particular objects or regions. Therefore, we encour-
agePNP-VQA to generate captions that describe
image regions relevant to the question instead of
generic captions with no speci�c aim.

We accomplish this goal by leveraging BLIP (Li
et al., 2022b), a large-scale pretrained vision-
language model that contains a network branch
outputting a similarity scoresim(v; t) between an
imagev and a textt. This branch, called Image-
grounded Text Encoder (ITE), employs a vision
transformer (Dosovitskiy et al., 2021) that encodes
the image, and a textual encoder that attends to the
image features using cross-attention. As input to
the image encoder, the image is equally divided
into K patches.

To identify relevant image patches, we feed the
imagev and the questiont to the ITE network and
apply a variation of GradCAM (Selvaraju et al.,



Figure 2: Examples of generic captions (from all patches) based on the original image and question-guided captions
(from the sampled patches) based on the GradCAM heatmaps on VQAv2 data. For illustrative purposes, we highlight
words in green to indicate correct answer predictions and the cues from captions. Words in red indicate wrong
answer predictions.

2017), a feature-attribution interpretability tech-
nique, that aggregates all cross-attention maps us-
ing weights from the gradients. Formally, let us de-
note image patch features asX 2 RK � D v , where
K is the number of image patches andDv the im-
age feature dimension. We denote textual features
asY 2 RM � D t , whereM is the number of tex-
tual tokens andD t the text feature dimension. For
every cross-attention head, we have parameter ma-
tricesWQ 2 RD t � D t andWK 2 RD v � D t . The
cross-attention scores,A 2 RM � K , can be written
as

A = softmax
�

Y WQW >
K X >

p
D t

�
: (1)

The j th row of A indicates the amount of atten-
tion the j th textual token allocates to all image
patches. At a selected layer of the ITE network,
we compute the derivative of the similarity score
w.r.t the cross-attention score,@sim(v; t)=@A, and
multiply the gradient matrix element-wise with the
cross-attention scores. The relevance of thei th im-
age patch,rel(i ), takes the average overH attention

heads and the sum overM textual tokens:
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where the superscript(h) denotes the index of at-
tention heads. For every caption we generate, we
sample a subset ofK 0 image patches with prob-
ability proportional to the patch relevance. The
captioning module sees the sampled patches only.

We provide the following motivation for the tech-
nique. The attention matrixA may be taken as
indicative of patch importance. However, much
redundancy exists among these matrices and many
attention heads may be pruned with little perfor-
mance loss (Bian et al., 2021), suggesting that some
scores are uninformative. Inspired by GradCAM,
we �lter out uninformative attention scores by mul-
tiplication with the gradient which could cause an
increase in the image-text similarity.

Figure 2 shows some examples of generic cap-
tions and question-guided captions with associated
relevance heatmaps. We can clearly observe that
question-guided captions contain more relevant in-
formation that helps produce the correct answers.


