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Abstract
Prompt tuning, or the conditioning of a frozen
pretrained language model (PLM) with soft
prompts learned from data, has demonstrated
impressive performance on a wide range of
NLP tasks. However, prompt tuning requires
a large training dataset to be effective and is
outperformed by finetuning the entire PLM in
data-scarce regimes. Previous work (Gu et al.,
2022; Vu et al., 2022) proposed to transfer soft
prompts pretrained on the source domain to the
target domain. In this paper, we explore do-
main adaptation for prompt tuning, a problem
setting where unlabeled data from the target
domain are available during pretraining. We
propose bOosting Prompt TunIng with doMain
Adaptation (OPTIMA), which regularizes the
decision boundary to be smooth around regions
where source and target data distributions are
similar. Extensive experiments demonstrate
that OPTIMA significantly enhances the trans-
ferability and sample-efficiency of prompt tun-
ing compared to strong baselines. Moreover, in
few-shot settings, OPTIMA exceeds full-model
tuning by a large margin.

1 Introduction

Prompt tuning (Lester et al., 2021; Li and Liang,
2021; Liu et al., 2022; Hambardzumyan et al.,
2021) is an effective method for adapting large-
scale pretrained language models for downstream
tasks. While keeping the PLM weights unchanged,
prompt tuning trains input vectors, called soft
prompts, that are input to the PLM alongside the
text embeddings. Compared to other adaptation
techniques for PLMs, such as Adapter (Houlsby
et al., 2019; Rücklé et al., 2021; He et al., 2022),
Compacter (Mahabadi et al., 2021), BitFit (Elad
et al., 2022), LoRA (Hu et al., 2021), and Ladder
Side-Tuning (Sung et al., 2022), the advantage of
prompt tuning is that it does not require addition
or change of model parameters. As a result, with
prompt tuning, we can easily specialize one neu-
ral network (possibly deployed on a large number
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Figure 1: Smooth vs. zigzag decision boundaries. Left:
When the distribution of the target-domain data (orange)
are similar to the source domain (blue), the smooth
decision boundary (solid line) generalizes better than
the zigzag boundary. Right: When the distributions are
different, it is not clear if the smooth decision boundary
is the better choice.

of servers or as application-specific integrated cir-
cuits) to support many different tasks by simply
switching out the soft prompt in the input, which
greatly simplifies model deployment and mainte-
nance.

However, training effective soft prompts usually
requires sufficient labeled training data (Su et al.,
2021). Studies have shown that prompt tuning
significantly underperforms full-model tuning on
many few-shot classification tasks (Gu et al., 2022).
Our experiments corroborate this finding. In addi-
tion, we find that, in few-shot learning, prompt tun-
ing is equally, if not more, sensitive to random seed
choices compared to full-model tuning, despite hav-
ing far fewer trainable parameters (§3.4). Gu et al.
(2022) address this by transferring prompts learned
from a source domain to the target domain with
limited training data.

In this paper, we investigate a related but dif-
ferent scenario, unsupervised domain adaptation
(UDA) (Wang et al., 2019; Long et al., 2022),
where unlabeled data from the target domain are
available. Such situations are common when data
are abundant but the labeling cost, including anno-
tator recruitment, annotator training, and quality
assurance, is high. Utilizing unlabeled examples
can be an effective approach toward enhancing the
data efficiency of prompt tuning.

We propose bOosting Prompt TunIng with do-



Main Adaptation (OPTIMA). Employing regular-
ization from adversarial perturbation, OPTIMA
learns a smooth decision boundary that passes
through regions of low data density. In addition,
recognizing that the feature distributions in the two
domains may overlap only partially, we propose
to focus the regularization to regions where the
target-domain and source-domain data exhibit high
similarity. We illustrate the intuition in Figure 1.

The popular Domain-adversarial Neural Net-
work (DANN) technique (Ganin et al., 2016) en-
courages the network to learn domain-invariant
features and optimizes for both a domain-specific
task loss and a domain discrimination loss. How-
ever, the two losses could compete against each
other, leading to optimization difficulties (Guo
et al., 2021). Empirically, DANN exhibit low per-
formance for prompt tuning. We hypothesize that
the low capacity of prompts worsens the optimiza-
tion problem. To solve this issue, in OPTIMA, we
create input disturbance vectors that optimize for
domain similarity, so that the prompt needs to opti-
mize for only the task loss. The separation leads to
excellent results.

Experiments shows that OPTIMA learns effec-
tive data representations that transfer well to the tar-
get domain under zero-shot and few-shot settings.
OPTIMA outperforms eight baselines, including
state-of-the-art transfer learning techniques such as
SPOT (Vu et al., 2022). Our contributions include
the following.

1. To our best knowledge, OPTIMA is the first
domain adaptation technique for soft prompt
tuning, which does not require any labeled
data from the target domain. Empirical re-
sults show that the unlabeled data boost target-
domain performance significantly.

2. Catering to partial overlaps of the data distri-
butions, we propose a targeted regularization
technique that encourages smooth decision
boundaries only in the areas where the two
domains are similar.

3. Through empirical evaluation, we show that
OPTIMA outperforms state-of-the-art base-
lines, improves data efficiency significantly,
and effectively addresses domain shifts. Code
and data are available at https://github.
com/guoxuxu/soft-prompt-transfer/
tree/main/optima.

2 Domain Adaptation for Prompt Tuning

In this section, we first introduce prompt tuning
for text classification. Then, we introduce how to
enhance in-domain generalization performance of
soft prompts by augmenting the input with virtual
perturbations. Next, we propose how to optimize
the perturbations to reduce the domain gap and ob-
tain soft prompts with domain-invariant knowledge.
Finally, we show how to use the soft prompts to
boost few-shot learning in the target domain.

2.1 Preliminaries: Prompt Tuning
We start by introducing some notations. The in-
put x is a sequence of n token embeddings, x =
⟨x1, . . . , xn⟩. The trainable soft prompt sequence
p has m embeddings, p = ⟨p1, . . . , pm⟩. The man-
ually designed hard prompt sequence h has k to-
ken embeddings h = ⟨h1, . . . , hk⟩. All embedding
vectors have d dimensions. The soft prompt and
the hard prompt are both task-specific. The hard
prompt text is usually a natural language descrip-
tion of the task, whereas the soft prompts do not
correspond to any text and are trained directly using
gradient descent.

For classification problems, we adopt the
masked language modeling formulation, which
aims to predict a predefined verbalizer token y ∈ V
at a masked position in the input. For example,
for binary classification, the words “yes” and “no”
may be used as verbalizers that indicate positive
and negative predictions, where we may define the
label space as Y = {yes, no}. In encoder-only
networks such as BERT (Devlin et al., 2019), the
output of the encoder is mapped to the label space
Y via a projection head. In encoder-decoder net-
works like T5 (Raffel et al., 2020), the decoder is
responsible for generating the verbalizer token.

We concatenate all sequences and the embedding
of the [MASK] token, e([MASK]), to form the
final input to the PLM: ⟨p;h;x; e[MASK]⟩. For
simplicity, we use the function f(x,p) to denote
the PLM prediction at the masked position, which
is a multinomial distribution over Y . We adopt the
the cross-entropy classification loss ℓxe with the
ground-truth label y ∈ Y .

ℓxe(x, y,p) = −log P (f(x,p) = y). (1)

We optimize the soft prompt by minimizing the
expected loss over the labeled training set, D:

p∗ = argmin
p

E
(x,y)∈D

[
ℓxe(x, y,p)

]
. (2)

https://github.com/guoxuxu/soft-prompt-transfer/tree/main/optima
https://github.com/guoxuxu/soft-prompt-transfer/tree/main/optima
https://github.com/guoxuxu/soft-prompt-transfer/tree/main/optima
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Figure 2: Intuition about perturbation and smoothness.
Under the zigzag (non-smooth) decision boundary, a
small perturbation with a well-chosen direction is suffi-
cient to flip the predicted class. The smooth boundary
requires a larger perturbation.

2.2 The OPTIMA Approach

We build OPTIMA off two intuitions regarding
domain adaptation. First, as the target domain pro-
vides no direct supervision, it is easy to overfit to
the source domain. Therefore, it is important to
mitigate overfitting by regularizing the network to
maintain a smooth decision boundary.

Under an adversarial learning framework, we
seek a small perturbation δ that, when added to
the input, results in maximum change in the model
prediction. After that, we optimize the model pa-
rameters to minimize the prediction change under
the adversarially perturbed input. The overall re-
sult is a network whose output f(x) changes little
where a small change is added to the input x. In
the sense of Lipschitz continuity, such a decision
boundary is smooth. Smooth decision boundaries
can be understood as passing through regions of
low data density and are shown to improve gen-
eralization (Huang et al., 2020; Cicek and Soatto,
2019; Kim et al., 2019).

The second intuition is that we do not have to reg-
ularize the entire decision boundary. As the source
and target domains may have different data distri-
butions, all that matters is the decision boundary
segment close to the target-domain data. Therefore,
we target the regularization and the perturbation
δ to areas on the data manifold where the source
domain and target domain are similar.

Specifically, we have a labeled dataset from the
source domain, Ds = {(x(i)

s , y
(i)
s )}Ns

i=1, drawn i.i.d.
from distribution Ps and an unlabeled dataset from
the target domain, Dt = {x(j)

t }
Nt
j=1, drawn i.i.d.

from distribution Pt. We define ℓKL as the KL
divergence between the prediction of the original
input and that of the perturbed input,

ℓKL(δ,p,xs) = KL(f(xs,p) ∥ f(xs + δ,p)).
(3)

ℓKL measures how much the model prediction
changes when the perturbation δ is applied to xs

and captures the smoothness of the decision bound-
ary. We illustrate the intuition in Figure 2.

Further, we introduce a domain discriminator
network parameterized by θd, which attempts to
distinguish data instances from the two domains.
This network is trained to reduce the domain dis-
crimination loss Ldisc,

Ldisc(δ,xs,xt) = E
xs,xt

[
− log P (z = 1|xs + δ)

− log P (z = 1|xs) (4)

− log P (z = 0|xt)
]
,

where z is the output of the discriminator network.
This loss is a variation of the cross entropy with
an additional term where xs is perturbed by δ. In
addition, we define an adversarial loss,

ℓadv(δ,xs) = −log P (z = 1|xs + δ), (5)

which, when maximized, causes the domain dis-
criminator to mistake the perturbed source example
xs + δ as coming from the target domain.

For a given source-domain input, xs, we find
the perturbation δ∗ within a ϵ-radius ball that max-
imizes the following objective,

δ∗ = argmax
δ,∥δ∥2≤ϵ

ℓKL(δ,p,xs) + ℓadv(δ,xs). (6)

Here, ℓadv(δ,xs) can be understood as a regular-
ization term for δ. By maximizing ℓKL, we seek a
disturbance to the input that causes the most change
in the model prediction. At the same time, the dis-
turbed input xs+δ∗ from the source domain should
resemble data in the target domain, in order to max-
imize ℓadv(δ,xs); ℓadv constrains δ∗ to the region
where the data from the two domains are similar.

We optimize the above loss w.r.t. δ using pro-
jected gradient ascent (PGA). After every gradient
descent step, δ is projected back to the ϵ-radius
ball Qϵ = {δ|∥δ∥2 ≤ ϵ}. We write the projection
operation as∏
∥·∥2≤ϵ

(ϕ) = argmin
δ∈Qϵ

∥δ − ϕ∥2 =
ϵϕ

max(ϵ, ∥ϕ∥2)
.

(7)
The update to δ can be written as

δ ←
∏

∥·∥2≤ϵ

(
δ + ηδ

g

∥g∥2

)
, (8)

g = ▽δ(ℓKL(δ,p,xs) + ℓadv(δ,xs)), (9)



where ηδ is the learning rate. We normalize g to
make sure the updates have the same magnitude.

During the training session, we alternately op-
timize the perturbation δ and the soft prompt p.
With δ∗ found by PGA, we optimize the following
loss function over p using standard gradient-based
optimization.

LR = E
(xs,ys)∈Ds

[
ℓxe(xs, ys,p) + ℓKL(δ

∗,p,xs)
]

p∗ = argmin
p

LR (10)

LR is the empirical expectation computed over the
current mini-batch. With the same δ∗, we also
minimize the domain discrimination loss over the
discriminator network parameter θd.

2.3 The OPTIMA Algorithm
We show the complete OPTIMA algorithm as Al-
gorithm 1. With lines 5 and 6, we create an ini-
tial perturbation δ

(i)
0 for every source data point

x
(i)
s . From line 7 to line 13, we iteratively update

the perturbation δ(i) associated with every source-
domain data point x(i)

s using projected gradient
ascent on ℓKL + ℓadv. After K iterations, we find
δ(i)∗ = δ

(i)
K , compute▽pLR accordingly, and up-

date p with stochastic gradient descent (SGD) and
learning rate ηp (line 16). At line 17, we update
the domain discriminator parameters θd using SGD
with the current mini-batches. Though we show
the vanilla SGD updates in lines 16-17, we can
easily switch to other optimizers such as SGD with
momentum or Adam (Kingma and Ba, 2015).

2.4 Comparison with Virtual Adversarial
Training

Virtual Adversarial Training (VAT) (Miyato et al.,
2016, 2018) is a pioneering work that applies adver-
sarial perturbation to unlabeled examples in semi-
supervised learning (SSL). The SSL assumption
is that we have labeled data (x, y)

i.i.d.∼ P and un-

labeled data x
i.i.d.∼ P . Notice that x is drawn

from the same distribution P regardless of the exis-
tence of the label y. VAT finds disturbance δ ∈ Qϵ

that maximizes the change in the model prediction
KL(f(x) ∥ f(x + δ)). After that, the neural net-
work minimizes cross-entropy on labeled data and
the KL-divergence under disturbance on all data.
Similar ideas have been explored in (Cicek and
Soatto, 2019; Kim et al., 2019; Park et al., 2022).

A critical difference between SSL and domain
adaptation is that the unlabeled data are drawn from

Algorithm 1: OPTIMA
Input: A labeled source-domain dataset

Ds = {(x(i)
s y

(i)
s )}Ns

i=1 and an unlabeled
target-domain dataset Dt = {x(j)

t }
Nt
j=1,

perturbation ball radius ϵ, ascent steps K and
step size ηδ .

Initialize: Soft prompts embeddings p and domain
discriminator θd, learning rates ηp, ηd.

1 repeat
2 Sample a pair of batches, each of B data points,

from Ds and Dt;
3 for i = 0, ..., B do
4 Forward computation: f(x(i)

s ,p), ∀x(i)
s

5 Sample a δ
(i)
0 ∼ U(−1, 1), ∀x

(i)
s

6 δ
(i)
0 ←

∏
∥·∥2≤ϵ(δ

(i)
0 )

7 for t = 0, ...,K − 1 do
8 Forward with δ

(i)
t : f(x(i)

s + δt,p)

9 Compute ℓKL(δ
(i)
t ,p) (Eq. 3)

10 Compute ℓadv(δ
(i)
t ) (Eq. 5)

11 Perform PGA on δ
(i)
t :

12 g ←▽
δ
(i)
t

(ℓKL(δ
(i)
t ,p)+ℓdisc(δ

(i)
t ))

13 δ
(i)
t+1 ←

∏
∥·∥2≤ϵ(δ

(i)
t + ηδ · g

∥g∥2
)

14 end
15 end
16 Compute LR (Eq. 10), Ldisc (Eq. 4) with δK
17 p← p− ηp ▽p LR(xs, ys,p)
18 θd ← θd − ηd ▽θd Ldisc(δK ,xs,xt;θd)
19 until the maximum training epoch is reached;

Output: Learned soft prompt p

Dataset Train Test nclass Verbalizers

MRPC 4,076 408 2 Yes/No
QQP 363,847 40,430 2 Yes/No

MNLI 392,702 9,815 3 Yes/Neutral/No
SNLI 549,367 9,842 3 Yes/Neutral/No
SICK 4,439 4,906 3 Yes/Neutral/No
CB 250 56 3 Yes/Neutral/No

Table 1: Dataset characteristics.

a different distribution (Pt) than the labeled data
(Ps). As the two distributions may overlap in some
regions and diverge in others, regularizing over the
the entire source dataset may be ineffective. Thus,
we propose to focus the smoothness constraint on
the regions of the data manifold where the source-
domain and target-domain data are similar.

3 Experimental Evaluation

We evaluate the representations learned by OP-
TIMA under zero-shot and few-shot settings.

3.1 Datasets

We investigate domain adaptation on six text clas-
sification datasets in two tasks. In the task of para-



Paraphrase NLI from MNLI NLI from SNLI

MRPC→ QQP MNLI→ SNLI SNLI→MNLI
QQP→MRPC MNLI→ SICK SNLI→ SICK

MNLI→ CB SNLI→ CB

Table 2: The set of domain adaptation experiments.

phrase detection, we employ MRPC and QQP1.
In the task of natural language inference, we em-
ploy four datasets, including MNLI (Williams et al.,
2018), SNLI (Bowman et al., 2015), CB (De Marn-
effe et al., 2019) and SICK (Marelli et al., 2014).
The statistics and the label space Y of each dataset
can be found in Table 1. We prepare 8 groups of
cross-domain experiments, two for paraphrase de-
tection and 6 for natural language inference (NLI),
as shown in Table 2.

3.2 Baseline Techniques
We include eight competitive single-domain and
cross-domain baselines. Out of the eight, baselines
#2-#4 do not use any transfer learning from the
source domain. Baselines #5-#9 utilize transfer
learning and data from the source domain.

1) Frozen PLM. Large PLMs have demonstrated
non-trivial zero-shot performance (Brown et al.,
2020). Here, we directly apply T5-large (Raffel
et al., 2020) with the manually written hard prompt
and take the verbalizer with the highest probability
as the prediction.

2) Prompt Tuning (PT). We feed the input data
with both soft and hard prompts to a frozen T5-
large model and finetune the soft prompt embed-
dings on the few-shot training set from the target
domain.

3) Fine Tuning (FT). We feed the input data with
the hard prompt to T5-large and finetune the entire
network on the few-shot target-domain data. Notice
that we use the verbalizer rather than training a
separate task-specific prediction head.

4) Prompt-based Fine Tuning (PFT). A repre-
sentative method on exploiting soft prompts for
fine-tuning, e.g., PERFECT (Rabeeh et al., 2022).
For fair comparison, we wrap the input with both
soft and hard prompts and finetune both the PLM
and the soft prompts on target-domain data. The
predictions are mapped via verbalizers.

5) Pre-trained Prompt Tuning (PPT). We fol-
1https://quoradata.quora.com/

First-Quora-Dataset-Release-Question-Pairs

low Gu et al. (2022), who propose to transfer to
sentence-pair classification tasks by pretraining on
the next sentence prediction task with 10GB text
from OpenWebText (Gokaslan and Cohen, 2019).
We download the pretrained checkpoint and fine-
tune the soft prompt on the target domain directly.

6) Soft Prompt Transfer (SPOT). Vu et al. (2022)
propose to pretrain soft prompts on source-domain
datasets and finetune the learned soft prompts on
the target-domain datasets. We apply this approach
on different source-target pairs in few-shot setting.

7) Prompt Tuning with FreeLB. FreeLB (Zhu
et al., 2020) is an adversarial training approach,
which generates the adversarial perturbation from
the supervised classification loss,

δ∗ = argmax
δ,∥δ∥≤ϵ

ℓxe(xs + δ, ys,p). (11)

After that, we find the optimal p by minimizing
ℓxe(xs, ys,p) + ℓxe(xs + δ, ys,p). The adversar-
ial training may be understood as another type of
smoothness constraint, as the network attempts to
maintain the same prediction despite the strongest
possible perturbation.

8) Prompt Tuning with VAT. We apply the origi-
nal VAT (Miyato et al., 2018) to generate the per-
turbations that maximally alter model predictions
on the source domain,

δ∗ = argmax
δ,∥δ∥≤ϵ

ℓKL(δ,p,xs), (12)

and optimize p as in Equation 10. This can be seen
as an ablation of OPTIMA, as Equation 12 omits
the ℓadv term from Equation 6.

9) Prompt Tuning with DANN. We imple-
ment Domain-adversarial Neural Network (DANN)
(Ganin et al., 2016), a popular UDA method for
prompt tuning. DANN introduces a domain dis-
crimination loss LDD,

LDD = E
xs,xt

[
− log P (z = 1|xs,p) (13)

− log P (z = 0|xt,p)
]
,

where z is the output of a domain discrimination
network. The soft prompt p optimizes for the
source-domain cross-entropy loss and the negative
domain discrimination loss.

p∗ = argmin
p

E
(xs,ys)∈Ds

[
ℓxe(xs, ys,p)

]
− LDD

(14)

https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs


For fair comparison, we use the same architec-
ture for the domain discriminator as OPTIMA.
Note that in DANN, the gradients from domain
discrimination loss are backpropagated to the soft
prompts, while in OPTIMA such gradients are
backpropagated to the perturbations.

3.3 Experiment Settings

Pretraining. For all methods that utilize source
domain data, we train the soft prompts using the
whole source-domain training set and perform
model selection using the source-domain valida-
tion set. When domain adaptation is applied, we
additionally use the entire target-domain training
set for training with all labels removed. To mitigate
variance, we train each method using 3 different
random seeds, yielding three different models. For
zero-shot evaluation, we report the mean score and
standard deviation of the three models.
Few-shot Evaluation. Following Gao et al. (2021),
we sample the few-shot training set and validation
set from the original target training set. Each set
contains 8 data points per class. We evaluate the
trained model on the original target validation set.
To mitigate high variance of few-shot learning, we
repeat the sampling 16 times, and report the aver-
age of 48 runs (16 samples × 3 models). More
details can be found in Appendix A.
Model Settings. For all the experiments, unless
specified, we use the LM-adapted version of T5-
large as the PLM. Results in Lester et al. (2021)
(Figure 3) shows that T5 further trained for LM
Adaptation works the best for prompt tuning, which
is also adopted by Gu et al. (2022) and Vu et al.
(2022). For the domain discriminator, we use a
linear classification layer with parameters θd =
[w, b],w ∈ R1024×2, b ∈ R2, where 1024 is the
dimension of the output hidden states from the
decoder of T5-large model.
Soft and Hard Prompts. Following Lester et al.
(2021); Gu et al. (2022), for all methods other than
PPT, we set the soft prompt length to 100, initial-
ized to the first 100 alphabetic token embeddings
of T5. We combine soft prompts with hard prompts
with details in the Appendix A.
Evaluation Metrics. Following (Lester et al.,
2021), we use accuracy and F1 score to evaluate
the performance on the MRPC and QQP datasets.
Following (Gu et al., 2022), we use accuracy for
NLI. For zero-shot model selection, we use the
source-domain validation set. For few-shot model

selection, we use the target-domain validation set.

3.4 Few-shot Performance

We adopt few-shot classification to evaluate the
representations learned by different models and
pretraining methods. We show the few-shot perfor-
mance in Table 3 and make the following observa-
tions. First, OPTIMA significantly outperforms all
baseline models across all the few-shot test cases,
including the state-of-the-art SPOT baseline. We
perform statistical significance tests that compare
OPTIMA to all baselines in a pair-wise manner.
In all but the SICK experiments, the differences
between OPTIMA and all baselines are statistically
significant. We attribute the performance to the
high-quality representation of OPTIMA, resulting
from domain adaptation.

Second, DANN performs much worse than
perturbation-based methods. As discussed earlier,
we suspect the poor performance of DANN is par-
tially due to the limited capacity of prompts (102K
parameters in our case). In OPTIMA, the pertur-
bation optimizes for domain invariance (Eq. 6),
whereas the prompt optimizes for only task-specific
losses (Eq. 10), which simplifies optimization for
soft prompts.

Third, OPTIMA outperforms the VAT baseline,
especially in the NLI tasks, where the performance
difference ranges from 1.2% in MNLI→SNLI to
5.8% in SNLI→CB. The VAT baseline is an ab-
lation of OPTIMA and omits the targeted regular-
ization term when finding the perturbation. This
comparison demonstrates the effectiveness of the
proposed targeted smoothness constraint.

Finally, our experiments are consistent with ear-
lier results of Gu et al. (2022), which show that
prompt tuning (PT) suffers from high variance in
the results. In the single-domain experiments, fine-
tuning the entire T5-Large (FT) exhibits compara-
ble, if not lower, variances than PT, even though FT
updates about 7500×more parameters. This under-
scores the importance of using pretrained prompts
from a source domain. Indeed, all transfer learn-
ing methods utilizing a source domain similar to
the target (SPOT, FreeLB, VAT, and OPTIMA)
yield sizable performance gains than single-domain
methods. Notably, FreeLB, VAT and OPTIMA are
obviously better than SPOT across the benchmarks,
which underscores the importance of alleviating
overfitting to source-domain datasets.
Sample Efficiency. We perform an additional ex-



Method Params PLM Source
QQP MRPC MNLI

Acc. F1 Acc. F1 Acc.

Frozen 0

T5-Large

✗ 45.5 54.9 33.8 11.8 41.7
PT 102K ✗ 48.4 ± 4.9 52.5 ± 5.5 53.1 ± 11.4 55.9 ± 23.4 33.4 ± 1.6
FT 770M ✗ 55.1 ± 6.7 52.0 ± 6.0 59.5 ± 7.8 67.9 ± 12.6 35.6 ± 2.4

PFT 770M ✗ 55.1 ± 5.1 57.8 ± 3.1 58.9 ± 11.0 65.3 ± 11.8 35.6 ± 3.6
PPT 410K T5-XXL ✓ 52.1 ± 11.1 56.2 ± 21.1 52.1 ± 11.1 56.2 ± 21.1 34.4 ± 1.4

MRPC→ QQP QQP→MRPC SNLI→MNLI
Acc. F1 Acc. F1 Acc.

SPOT 102K

T5-Large

✓ 64.5 ± 2.7 64.5 ± 0.8 68.7 ± 2.5 77.1 ± 2.9 74.3 ± 0.9
FreeLB 102K ✓ 65.0 ± 2.4 64.5 ± 1.5 68.5 ± 2.2 77.6 ± 2.2 75.0 ± 1.0

VAT 102K ✓ 66.2 ± 2.0 64.9 ± 0.7 69.6 ± 1.9 79.0 ± 2.1 74.9 ± 1.1
DANN 102K ✓ 63.4 ± 2.5 62.5 ± 2.7 68.0 ± 3.5 76.2 ± 5.1 73.1 ± 1.4

OPTIMA 102K ✓ 69.1* ± 1.7 65.8* ± 1.9 71.2* ± 1.7 79.9* ± 1.7 78.4* ± 0.6

Method Params PLM Source
SNLI SICK CB
Acc. Acc. Acc.

Frozen 0

T5-Large

✗ 35.9 37.1 55.4
PT 102K ✗ 34.6 ± 2.4 61.5 ± 7.8 38.3 ± 13.6
FT 770M ✗ 41.6 ± 3.8 67.6 ± 6.3 51.2 ± 7.8

PFT 770M ✗ 38.6 ± 5.1 71.3 ± 6.4 57.3 ± 9.2
PPT 410K T5-XXL ✓ 34.7 ± 2.8 54.6 ± 14.0 43.0 ± 14.6

MNLI→ SNLI SNLI→ SICK MNLI→ SICK SNLI→ CB MNLI→ CB
Acc. Acc. Acc. Acc. Acc.

SPOT 102K

T5-Large

✓ 78.8 ± 1.1 69.9 ± 5.3 72.9 ± 5.9 61.7 ± 5.0 65.3 ± 3.4
FreeLB 102K ✓ 81.5 ± 0.7 69.5 ± 6.8 73.1 ± 4.8 61.6 ± 4.2 66.1 ± 3.3

VAT 102K ✓ 80.9 ± 0.9 68.6 ± 6.4 72.7 ± 6.3 59.0 ± 5.5 68.7 ± 4.8
DANN 102K ✓ 71.1 ± 3.2 69.0 ± 6.7 73.4 ± 3.7 55.7 ± 5.5 66.9 ± 4.6

OPTIMA 102K ✓ 82.1* ± 0.8 73.3 ± 6.8 74.8 ± 4.4 64.8* ± 1.1 71.2* ± 3.1

Table 3: Few-shot test performance. Results in bold are the best and results underlined are the best in the single-
domain group. Results marked with * are significantly better than all the others under the student t-test (p < 0.05).

periment where we increase the number of avail-
able samples per class from the target domain, and
show the results in Figure 3. We observe that 4-shot
OPTIMA achieves comparable performance as full-
model finetuning on 128-shot dataset. Similarly,
8-shot OPTIMA achieves an accuracy comparable
to 64-shot SPOT. These results clearly demonstrate
the superior sample efficiency of OPTIMA.

3.5 Zero-shot Performance

Zero-shot performance on the target domain is also
an effective way to evaluate the learned representa-
tions. We show the zero-shot performance in Table
4 and make the following observations.

First, OPTIMA still takes the highest spot in
performance in all target domains, outperforming
the second best baseline by up to 4.1%. In the
source domain, OPTIMA is comparable with the
baselines. Second, the ablation baseline, VAT, is
consistently surpassed by OPTIMA, which again
confirms the utility of our proposal. Third, the state-
of-the-art method, SPOT, in the majority of cases
produces results with higher variance than the three
perturbation-based methods. This suggests that ad-
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Figure 3: Average test performance on MRPC across 16
runs. PT and FT are trained on MRPC directly. The rest
use the soft prompt pretrained under the QQP→MRPC
setting as initialization. OPTIMA exhibits the best per-
formance across different few-shot settings.

versarial perturbation is effective against overfitting.
Lastly, except in the MNLI→ SICK task, DANN
performs rather poorly across the benchmarks, indi-
cating that DANN is not suitable for prompt tuning.



Method
MRPC MRPC→ QQP QQP QQP→MRPC MNLI→ CB
Acc. Acc. F1 Acc. Acc. F1 Acc.

SPOT 82.5 ± 1.5 60.9 ± 4.6 63.6 ± 2.0 80.9 ± 2.2 65.7 ± 3.4 73.2 ± 5.7 63.2 ± 5.7
FreeLB 85.5 ± 0.3 63.1 ± 3.7 63.9 ± 1.0 82.2 ± 2.7 69.4 ± 1.1 78.7 ± 1.3 67.8 ± 3.9

VAT 84.7 ± 0.8 64.8 ± 4.6 64.1 ± 1.7 81.9 ± 0.7 68.9 ± 1.5 78.5 ± 1.5 67.8 ± 5.8
DANN 81.5 ± 2.1 63.9 ± 1.8 57.6 ± 3.3 81.4 ± 0.7 63.6 ± 4.8 71.5 ± 9.7 59.8 ± 4.4

OPTIMA 85.7 ± 0.7 68.9 ± 0.8 66.3 ± 0.6 82.7 ± 1.3 71.2 ± 0.4 80.0 ± 0.6 68.3 ± 2.6

Method
MNLI MNLI→ SNLI MNLI→ SICK SNLI SNLI→MNLI SNLI→ SICK SNLI→ CB
Acc. Acc. Acc. Acc. Acc. Acc. Acc.

SPOT 83.4 ± 0.8 79.2 ± 1.0 51.8 ± 0.7 88.9 ± 0.1 75.6 ± 0.4 52.7 ± 1.9 47.6 ± 3.7
FreeLB 84.8 ± 0.8 81.8 ± 0.7 52.2 ± 0.2 89.9 ± 0.1 77.5 ± 0.5 52.9 ± 1.9 47.5 ± 4.7

VAT 83.7 ± 0.3 81.0 ± 0.2 51.4 ± 1.4 88.7 ± 0.1 77.1 ± 1.3 51.8 ± 2.1 45.8 ± 0.8
DANN 80.4 ± 2.7 72.4 ± 5.9 61.9 ± 2.7 85.3 ± 3.2 70.3 ± 3.6 51.5 ± 1.2 42.3 ± 2.2

OPTIMA 84.6 ± 0.3 82.1 ± 0.8 55.2 ± 1.0 89.2 ± 0.1 79.1 ± 0.1 53.8 ± 0.5 49.4 ± 4.2

Table 4: Source-domain and zero-shot target-domain test performance.
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Figure 4: TF-IDF similarity for SNLI, MNLI, and CB,
where we treat all text in one class as a document.

3.6 Class Similarity and Transfer Learning

We investigate the relationship between domain
similarity and transfer learning performance. Due
to space constraints, we present the results on CB
as the target domain and leave more content to
the Appendix. CB is a difficult target. On SNLI,
all models in Table 4 achieve in-domain test accu-
racy greater than 88%, but zero-shot SNLI-to-CB
transfer obtains accuracy of around 47%. This is
disappointing given that even Frozen PLM achieves
55.4% on CB.

To investigate the underlying cause, we plot the
TF-IDF textual similarities between different do-
mains in Figure 4. We compare SPOT, which per-
forms direct transfer without any smoothness regu-
larization, and OPTIMA in the form of confusion
matrices in Figure 5 and F1 scores in Figure 6.

Figure 4(a) shows irregular similarities between
classes of SNLI and CB, which explains the diffi-
culty in transfer learning. For example, the SNLI
Neutral class is more similar to the CB Yes class
than the CB Neural class. The CB Neutral class
has low similarity to all SNLI classes. This leads to
significant confusion for the few-shot SPOT classi-
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Figure 5: Confusion matrices for 8-shot transfer learn-
ing to CB. Each result is the average test accuracy across
16 runs. (a) and (c) refer to SNLI→CB while (b) and
(d) refer to MNLI→CB setting respectively

fier in the SNLI-to-CB transfer and especially low
accuracy for the CB Neutral class (Figure 6). The
situation is similar for the MNLI-to-CB transfer.
Interestingly, the regularization of OPTIMA is able
to alleviate the domain shift and obtain accuracy
improvements for the CB No and Neutral classes.

4 Related Work

Few-shot Learning with PLMs. Traditional ap-
proach for few-shot learning is fine-tuning, where
a PLM and a task-specific head are tuned together
for the tasks at hand (Zhang et al., 2021; Chen
et al., 2020; Das et al., 2022). However, fine-
tuning causes high memory consumption as the
scale of PLMs increases. To better exploit large
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Figure 6: Class-level F1-score on the CB datasets.
SPOT_0 and OPTIMA_0 denote zero-shot performance.
SPOT_8 and OPTIMA_8 denote 8-shot performance.

frozen PLMs, prompt-based methods have demon-
strated excellent few-shot performance on a range
of datasets by wrapping test examples in cloze ques-
tion format for GPT-3 to make predictions (Brown
et al., 2020). Prompts are also shown to boost fine-
tuning in LM-BFF (Gao et al., 2021), PET (Schick
and Schütze, 2021a,b), and PERFECT (Rabeeh
et al., 2022).
Transfer Learning for Prompt Tuning. Soft
prompt tuning methods (Lester et al., 2021; Li and
Liang, 2021; Liu et al., 2022; Hambardzumyan
et al., 2021) learn prompts from data and achieve
comparable performance with full-model tuning
when the PLMs are large enough. SPOT (Vu et al.,
2022) proposes to pretrain soft prompts on a set of
source-domain datasets and then use the trained
soft prompts to boost prompt tuning for target
domains. PPT (Gu et al., 2022) introduces un-
supervised tasks such as next sentence prediction
as the pre-text task for prompt pretraining. After
that, the soft prompts are finetuned on the few-shot
target-domain data. Wang et al. (2021) pretrain soft
prompts across few-shot datasets. Different from
these methods, we explore the use of unlabeled
target domain data in few-shot prompt tuning.
Consistency Training for NLP. Consistency train-
ing methods (Laine and Aila, 2017; Sajjadi et al.,
2016; Wei and Zou, 2019; Ng et al., 2020; Xie
et al., 2020) force the model to make consistent
predictions against small perturbations. For ex-
ample, Park et al. (2022) produce discrete virtual
adversarial noise to the token embeddings. Yoon
et al. (2021) apply mixup to perturb the spans of
the input texts for text classification. Kim et al.
(2021) propose a consistency training framework
to enhance the conversational dependency of ques-
tion answering. Different from these single-domain
settings, we consider a cross-domain setting and
exploit domain adaptation for regularization.

Neural Domain Adaptation for NLP. Neural do-
main adaptation (Ben-David et al., 2010) includes
supervised domain adaptation (SDA) (Zhou et al.,
2019) and unsupervised domain adaptation (UDA)
(Wang et al., 2019; Long et al., 2022), depend-
ing on whether the target-domain data are labeled
or unlabeled. Domain adaptation has been used
in various applications such as sentiment analysis
(Glorot et al., 2011; Dai et al., 2020; Ghosal et al.,
2020), machine translation (Chu et al., 2017), read-
ing comprehension (Wang et al., 2019), and others
(Shah et al., 2018; Naik and Rose, 2020). For a
complete survey of UDA in NLP, we refer read-
ers to Ramponi and Plank (2020). In this paper,
we do not induce domain-invariant soft prompts
but encourage the learned adversarial perturbations
to fill in the domain gap and focus on smoothing
the decision boundary where source-domain and
target-domain data are similar.

5 Conclusions

In this paper, we propose OPTIMA to enhance
soft prompt transfer performance by regularizing
the training on source domain under perturbations
generated with domain adaptation. We extensively
evaluate the proposed method. Compared to com-
petitive baselines, soft prompt trained with OP-
TIMA generalizes better to the source domain and
significantly boosts zero-shot and few-shot learning
in the target domain. We observe that pre-training
soft prompts on a similar dataset confers more ben-
efits than pre-training on a disimilar dataset. We
expect the current work to contribute to the wide
deployment of PLMs.
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Limitations

We identify a few limitations of the current work.

• The domain adaptation problem formulation
requires unlabeled data from the target do-
main. Although unlabeled data are easy to
obtain in most cases, doing so might be diffi-
cult for some data-scarce domains.

• The proposed regularization technique ad-
dresses the situation where the source and
target domains have different data distribu-
tions. When the two distributions are exactly
the same, the technique degenerates to simply
adversarial training. When the two distribu-
tions are extremely dissimilar, the transfer is
unlikely to yield performance improvements.
A unified framework that automatically de-
tects domain distances and applies the correct
method may be desirable.

• The power of perturbations has the most effect
in the few-shot / zero-shot settings. When
the target domain has abundant labeled data,
the gap between soft prompt tuning and our
method will likely diminish.
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A Appendix

A.1 Few-shot Evaluation Protocol
In PET (Schick and Schütze, 2021b), authors evalu-
ated its few-shot performance using a fixed training
set. In LM-BFF (Gao et al., 2021), authors con-
ducted more studies on the configuration of few-
shot settings and proposed to average 5 randomly
sampled few-shot sets. We determine the sample
size, 16, based on an statistical analysis2 on the
sample size required for investigating an unknown
population mean under student t-test. Here we
adopt a significance level α = 0.05, the risk of
rejecting a true hypothesis that the performance of
one method is better than the other.

For all the cross-domain few-shot learning meth-
ods, the few-shot test performance of 3 differently
pre-trained soft prompts are averaged for each
given Dtrain and Ddev splits, and we obtain 16
averaged few-shot performance. Then we compute
the mean and standard deviation for the 16 test
results.
Training Settings. Following (Lester et al., 2021),
we use Adafactor (Shazeer and Stern, 2018) as the
optimizer and set the learning rate to 0.3 for all
the pre-training tasks on the entire source domain
dataset. We use the cosine learning rate scheduler
for all methods. For the pre-training stage, we set
the maximum number of training steps to 30, 000
and evaluate the models on the validation set every
1, 000 steps. We set the batch size to 8 for MRPC
and QQP, and 18 for the NLI datasets. For the few-
shot learning setting, we set the maximum number
of training steps to 1, 000 and evaluate models on
|Ddev| every 4 steps. we set batch size to 4 for
MRPC and QQP, and 6 for the NLI datasets. All
the training are done on NVIDIA V-100 with 32
GB.

Hybrid Template
T1 P < S1 > and < S2 > are equivalent? [MASK]
T2 P hypothesis: < S1 > premise: < S2 > answer: [MASK]

Table 5: The hybrid templates where P represents learn-
able soft prompts. < S1 > and < S2 > are sentence
pairs. [MASK] represents the labels to be predicted. T1
is the template adopted by the paraphrase detection and
question pair classification tasks. T2 is the template
adopted by four natural language inference tasks.

2https://www.itl.nist.gov/div898/handbook/prc/
section2/prc222.htm

Methods 4-shot 8-shot 16-shot 64-shot 128-shot

PT 51.9 ± 8 53.1 ± 11 53.0 ± 9 57.2 ± 9 51.7 ± 10
FT 54.4 ± 12 59.5 ± 8 61.6 ± 6 68.2 ± 4 70.1 ± 5

SPOT 68.2 ± 4 68.7 ± 3 67.9 ± 5 71.6 ± 4 71.6 ± 4
FreeLB 69 ± 4 68.5 ± 2 69.5 ± 2.5 71.9 ± 1.7 72.7 ± 1.8

VAT 69.8 ± 2.7 69.6 ± 1.9 70.7 ± 2.7 71.4 ± 3.1 72.5 ± 2.9
DANN 66.6 ± 6.2 63.6 ± 4.8 70.1 ± 3.8 70.7 ± 3.8 70.9 ± 2.2

OPTIMA 70.5 ± 3.4 71.2 ± 1.7 73.1 ± 2.1 74 ± 2.7 74 ± 2.1

Table 6: Average test performance on MRPC dataset,
where transfer learning methods are transferred from
the QQP dataset.

SNLI MNLI
Yes Neutral No Yes Neutral No

CB
Yes 83.7 7.61 8.7 70.43 20.87 8.7

Neutral 65 20 15 56 44 0
No 62.5 12.5 25 19.29 20 60.71

Table 7: Confusion matrix for zero-shot performance of
SPOT on each class of CB. Results are in %. The bold
means the most predicted labels for each of the classes
of CB

SNLI MNLI
Yes Neutral No Yes Neutral No

CB
Yes 76.52 18.26 6.52 71.3 20 8.7

Neutral 60 40 0 52 48 0
No 52.86 29.29 17.86 17.86 20.71 61.43

Table 8: Confusion matrix for zero-shot performance
of OPTIMA on each class of CB.

SNLI MNLI
Yes Neutral No Yes Neutral No

CB
Yes 63.86 17.93 18.21 56.25 32.61 11.14

Neutral 40 36.25 23.75 46.25 41.25 12.5
No 12.95 23.88 63.17 8.04 16.52 75.45

Table 9: Confusion matrix for few-shot performance of
SPOT on each class of CB.

SNLI MNLI
Yes Neutral No Yes Neutral No

CB
Yes 52.45 25.54 22.01 61.68 26.09 12.23

Neutral 15 73.75 11.25 26.25 62.5 11.25
No 7.37 16.96 75.67 6.69 14.96 78.35

Table 10: Confusion matrix for few-shot performance
of OPTIMA on each class of CB.
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Figure 7: Document similarity for MRPC and QQP
datasets between their classes.
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pair of NLI datasets.


