
Supplemental Material for
HYDRA: Hypergradient Data Relevance Analysis for Interpreting

Deep Neural Networks

Yuanyuan Chen1, Boyang Li1, 2*, Han Yu1*, Pengcheng Wu1, and Chunyan Miao1*

1School of Computer Science and Engineering, Nanyang Technological University
2Alibaba-NTU Singapore Joint Research Institute

{yuanyuan.chen, boyang.li, han.yu, pengcheng.wu, ascymiao}@ntu.edu.sg
*Corresponding authors

Contents

Experiment Settings 1

Additional Examples 1

Additional Results for Debugging Training Data 1

Growth of Training Time 2

Approximation Error Analysis 2
Bounds with Lipschitz Continuity 2
Bounds with Relaxed Conditions 4

Mini-batch Hypergradient 5

Experiment Settings
MNIST and Fashion-MNIST are divided into training sets
of 50,000, validation sets of 10,000, and test sets of 10,000
samples, respectively. CIFAR-10 is divided into a training
set of 40,000, a validation set of 10,000, and a test set of
10,000 samples, respectively.

LeNet-5 consists of 61,706 trainable parameters. We re-
place all of the tanh activation function with ReLU in our
experiments. We also use the DenseNet-40 model with a
growth rate of 12, which contains 176,122 trainable param-
eters.

Table 3 gives the detailed hyperparameters and other set-
tings used in our experiments. For the reduce-on-plateau
schedule, we recognize a plateau when the sum of the train-
ing loss and the validation loss does not decrease more than
0.01% of the best value found in two epochs.

All networks are optimized using SGD with momentum
of 0.9. On MNIST and Fashion-MNIST, we train LeNet-5
using SGD with momentum for 20 epochs with a batch size
of 64. This procedure obtains test accuracies of 99.09% and
89.99% respectively. On CIFAR-10, we train DenseNet-40
using SGD with momentum for 150 epochs with a batch size
of 64 and obtains test accuracy of 90.5%.

In the first training data debugging experiment, we per-
form early stopping after 20 epochs of training and report

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Table 1: MNIST Training samples with extreme influence on
the test data, their ground-truth and predicted labels, model
confidence, and contribution on the test set. A positive con-
tribution means the training sample reduces overall test loss.

Training
Sample

True vs. Pre-
dicted Labels

Model
Conf.

Contribution
to Test Data

5 / 5 0.66 −1.0× 10−4

8 / 8 0.73 4.8× 10−5

the accuracy in the last epoch. In the second training data
debugging experiment, we train the networks for 50 epochs.

Additional Examples
Two data points from MNIST with extreme contributions are
shown in in Table 1. The first is labeled as 5 but closely re-
sembles 6. The second is labeled as 8 and has an unusual up-
per half. Their average contribution to all test data points is
4-5 orders of magnitudes higher than the average (≈ 10−9).
Due to their unusual appearances, these data points stand
out from the rest of the training data and hence exert large
influence on the model.

The two training samples heavily influence the two test
data points in Table 2. The first test sample in Table 2 is mis-
classified as 5. HYDRA indicates this error may be caused
by the training sample that conflates 5 and 6. The second test
sample is wrongly classified as 3. Regardless, the outlandish
looking 8 probably helped in bringing the training loss on
this digit down.

Additional Results for Debugging Training
Data

We report the results for debugging training data with the
label noise rate r set to 50% in Table 4. For all datasets,
training the network from scratch using samples chosen by

Table 2: Test samples strongly influenced by training sam-
ples in Table 1.

Test
Sample Influencer Contrib.

True /
Predicted

Label
Model
Conf.

-0.31 6 / 5 0.78

0.091 8 / 3 0.80

HYDRA leads to better accuracy than influence functions.
In addition, HYDRA produces significantly better perfor-
mance than training directly on noisy data on MNIST and
CIFAR10. An exception happens on Fashion-MNIST, where
filtering noisy data points using either method performs
worse than not filtering the data at all.

Growth of Training Time
Our theoretical analysis indicates that the training time of
HYDRA scales linearly with with the number of model pa-
rameters and the number of data points whose contributions
are tracked through the training trajectory. In this section,
we empirically study how training time of HYDRA grows
with those two factors.

We perform the experiments on a server with an AMD
Ryzen 7 3800X 8-Core processor, 32 GB of main mem-
ory, two 2 GeForce RTX 2080 Ti GPU, each with 12GB
memory, and 1 TB XPG GAMMIX S50 solid state drive.
We used three different networks, LeNet5 (Lecun et al.
1998), DenseNet-40 (Huang et al. 2017), and MobileNet
V2 (Sandler et al. 2019), which have 61,706, 176,122, and
2,236,682 trainable parameters respectively. For each net-
work, we record the training time when tracking the contri-
bution of 400, 2,000 and 10,000 training data points.

Figure 1 shows the average training time per tracked data
point and per network parameter. We note that the average
training time does not increase, which indicates the train-
ing time scales sublinearly initially and grows linearly after-
wards.

Approximation Error Analysis
In this section, we will analyze the approximation error in-
troduced by dropping theHer term in the case of vanilla GD.
After dropping the term, the recurrent update equation be-
comes

∇:t,i = ∇t−1,i − ηtλ∇t−1,i − ηtgt−1,i. (1)

We are interested in bounding the norm of the approximation
error, which is defined below.
Definition 1. The approximation error at the tth iteration is
defined as

et := ∇t,i −∇
:
t,i, (2)

Figure 1: The training time scales up with respect to #Pa-
rameters and #Tracked Samples.

where∇:t,i is the approximation of∇t,i.
Before the analysis, we also need some moderate condi-

tions about the optimization process.
Condition 1. The training loss Ltrain(x,y,w) is twice dif-
ferentiable.

Condition 2. The optimization process converges. That is,

lim
t→∞

wt = ŵ. (3)

Bounds with Lipschitz Continuity
First, we bound the error under several moderate conditions
regarding the optimization process. In the next subsection,
we show how these conditions can be further relaxed.
Condition 3. The empirical risk function Ler

train has
Lipschitz-continuous gradients with Lipschitz constant L.
Formally,∥∥∥∂Ler

train(w1)
∂w1

− ∂Ler
train(w2)
∂w2

∥∥∥ ≤ L‖w1 −w2‖ , ∀w1,w2. (4)

Table 3: Hyperparameters of Experiments.

Dataset # Epochs Batch
Size

Initial
Learning Rate

Learning Rate
Schedule

Weight
Decay Momentum

MNIST 20 64 0.01 multiplied by 0.1
at epoch 5. 2.0× 10−5 0.9

Fashion-MNIST 20 64 0.01 multiplied by 0.5
on plateaus of 2 epochs 2.0× 10−5 0.9

CIFAR-10 150 64 0.1 multiplied by 0.1
on plateaus of 2 epochs 2.5× 10−5 0.9

Table 4: Classification accuracy when different methods are
used to clean the dataset with a known proportion of label
noise.

Dataset
Wrong
Labels Method

Final
Accuracy

MNIST 50%
No Filtering 94.65%

Inf. Func. 93.83%
HYDRA 98.31%

Fashion-MNIST 50%
No Filtering 87.44%

Inf. Func. 76.70%
HYDRA 87.28%

CIFAR-10 50%
No Filtering 68.91%

Inf. Func. 58.34%
HYDRA 75.06%

The Lipschitz continuity is a regular condition, which is im-
plied by, for example, thatLer

train is twice differentiable and w
takes value from a compact set. The latter is likely true since
ŵ tends to be close to w0. It is worth noting that this condi-
tion constrains the eigenvalues of Her

t to the range [−L,L].
Condition 4. The learning rate sequence ηt is non-
increasing and lower-bounded by 0. That is,

ηt ≥ ηt+1 > 0,∀t. (5)

Since ηt and λ are both typically quite small, we assume
their product is also small.
Condition 5. The product 0 < ηtλ < 1,∀t.

Finally, the contribution ∇t,i should be bounded, or ef-
forts to estimate it would end in vain.
Condition 6. The contribution measure sequence∇t,i does
not diverge as t → ∞ and is bounded by a constant Mw.
More formally,

lim
t→∞

∥∥∇t,i∥∥ < Mw, ∀i. (6)

Theorem 1. With conditions 1-6, the norm of the approxi-
mation error is bounded by

‖et‖ < LMw
η1
ηtλ

. (7)

Proof.
First, we have the recursive formula:

e0 = 0, (8)
et = (1− ηtλ)et−1 − ηtHer

t−1∇t−1,i. (9)

After solving it, we get

et =

t∑
j=1

(−ηj)(1− ηjλ)t−jHer
j−1∇j−1,i. (10)

By the triangle inequality,

‖et‖ ≤
t∑

j=1

ηj(1− ηjλ)t−j
∥∥∥Her

j−1∇j−1,i
∥∥∥ . (11)

We then have
t∑

j=1

ηj(1− ηjλ)t−j
∥∥∥Her

j−1∇j−1,i
∥∥∥

≤
t∑

j=1

ηj(1− ηjλ)t−j
∥∥L∇j−1,i∥∥

=

t∑
j=1

ηj(1− ηjλ)t−jLMw

≤LMwη1

t−1∑
j=0

(1− ηtλ)j

=LMwη1
1− (1− ηtλ)t

ηtλ

<LMw
η1
ηtλ

.

(12)

As such, we obtain the desired inequality.
Furthermore, if we know that the learning rate decays suf-

ficiently exponentially, the approximation error diminishes
when t tends to infinity.

Condition 7. The learning rate sequence ηt decays expo-
nentially at rate c, which is less than 1− η1λ. That is,

ηt+1 = cηt, ∀t, (13)

0 < c < 1− η1λ. (14)

Theorem 2. With conditions 1-7 and the learning rate
schedule in condition 7, the approximation error diminishes
when t tends to infinity

lim
t→∞
‖et‖ = 0. (15)

Proof.
Under the specific learning rate schedule, we have

‖et‖ ≤ LMw

t∑
j=1

ηj(1− ηjλ)t−j

= LMw

t∑
j=1

η1c
j−1(1− ηjλ)t−j

≤ LMw
η1
c
(1− ηtλ)t

t∑
j=1

(
c

1− η1λ

)j

= LMw
η1
c
(1− ηtλ)t

c
1−η1λ − (c

1−η1λ)
t+1

1− c
1−η1λ

.

(16)

When t→∞, (1− ηtλ)t and (c/(1− η1λ))t+1 go to zero,
and the claim follows.

Bounds with Relaxed Conditions
The condition 3 in the previous section may appear to be
too restrictive. In this subsection, we replace it with a more
relaxed condition and show that the error is still upper-
bounded in the limit.
Condition 8. The Hessian sequence Her converges as t →
∞

lim
t→∞

Her
t = Ĥer, (17)

where Ĥer is the Hessian of the empirical risk Ler
train at ŵ.

Since w converges, it makes sense to assume that Hessian
converges, too.
Corollary 1. The eigenvalues of Her converge to the eigen-
values of Ĥer.

By this corollary, we can find an index N such that∣∣∣κmax(Her
t)− κmax(Ĥer)

∣∣∣ < δ,∀t ≥ N , given an arbitrar-
ily small δ, where κmax is the eigenvalue with maximal ab-
solute value. Now, we fix such an infinitesimal δeigen and
the corresponding index Neigen.

Finally, since ηt and λ are both typically quite small, we
assume their product is eventually small.
Theorem 3. With conditions 1-6, and 8, and let t0 =
Neigen+1 be the start of the tail portion of the optimization,
we can upper bound the error’s norm as

lim
t→∞

∥∥et,t0∥∥ < (κmax(Ĥer) + δeigen)Mw
ηt0
ηtλ

. (18)

where et,t0 is a shorthand for a two-part sum that constitute
et,

et = et,t0 =

t0−1∑
j=1

(−ηj)(1− ηjλ)t−jHer
j−1∇j−1,i

+

t∑
j=t0

(−ηj)(1− ηjλ)t−jHer
j−1∇j−1,i.

(19)

Proof. Again, we have the recursive formula:

e0 = 0, (20)
et = (1− ηtλ)et−1 − ηtHer

t−1∇t−1,i. (21)

After solving it, we get

et =

t∑
j=1

(−ηj)(1− ηjλ)t−jHer
j−1∇j−1,i. (22)

Now if t ≥ t0, then by the triangle inequality,

∥∥et,t0∥∥ ≤ t0−1∑
j=1

ηj(1− ηjλ)t−j
∥∥∥Her

j−1∇j−1,i
∥∥∥

+

t∑
j=t0

ηj(1− ηjλ)t−j
∥∥∥Her

j−1∇j−1,i
∥∥∥ . (23)

Consider the second part first, we have

t∑
j=t0

ηj(1− ηjλ)t−j
∥∥∥Her

j−1∇j−1,i
∥∥∥

<

t∑
j=t0

ηj(1− ηjλ)t−j(κmax(Ĥer) + δeigen)
∥∥∇j−1,i∥∥

≤(κmax(Ĥer) + δeigen)Mw

t∑
j=t0

ηj(1− ηjλ)t−j

≤(κmax(Ĥer) + δeigen)Mwηt0

t∑
j=t0

(1− ηtλ)t−j

=(κmax(Ĥer) + δeigen)Mwηt0
1− (1− ηtλ)t−t0

ηtλ

<(κmax(Ĥer) + δeigen)Mw
ηt0
ηtλ

.

(24)

Note that the first part of the right-hand side→ 0 as t →
∞. In other words, for any small δ1 > 0, there is a number
N1 > t0, such that for all t ≥ N1,

t0−1∑
j=1

ηj(1− ηjλ)t−j
∥∥∥Her

j−1∇j−1,i
∥∥∥ < δ1. (25)

Taken together, for any infinitesimal δ1 > 0, there exist
an index N1 such that∥∥et,t0∥∥ < (κmax(Ĥer) + δeigen)Mw

ηt0
ηtλ

+ δ1,∀t ≥ N1.

(26)
This is the definition of the limit that we seek to prove.

If we add condition 7, we would have the same conclusion
as before.

Theorem 4. With the extra condition (7),

lim
t→∞

∥∥et,t0∥∥ = 0. (27)

Proof.
Reconsidering the second part, which can be rewritten as

t∑
j=t0

ηj(1− ηjλ)t−j
∥∥∥Her

j−1∇j−1,i
∥∥∥

≤(κmax(Ĥer) + δeigen)Mw

t∑
j=t0

ηj(1− ηjλ)t−j

≤(κmax(Ĥer) + δeigen)Mw

t∑
j=t0

ηt0c
j−t0(1− ηjλ)t−j

=(κmax(Ĥer) + δeigen)Mw
ηL
ct0

t∑
j=t0

cj(1− ηjλ)t−j

≤(κmax(Ĥer) + δeigen)Mw
ηt0
ct0

(1− ηtλ)t
t∑

j=t0

(
c

1− ηjλ
)j

≤(κmax(Ĥer) + δeigen)Mw
ηt0
ct0

(1− ηtλ)t
t∑

j=t0

(
c

1− η1λ
)j .

(28)

Introducing q = c
1−η1λ for simplification, we have

t∑
j=t0

ηj(1− ηjλ)t−j
∥∥∥Her

j−1∇j−1,i
∥∥∥

≤(κmax(Ĥer) + δeigen)Mw
ηt0
ct0

(1− ηtλ)t
qt0 − qt+1

1− q

≤(κmax(Ĥer) + δeigen)Mw
ηt0
ct0

(1− ηtλ)t
qt0

1− q
.

(29)

Finally, since limt→∞ (1− ηtλ)t = 0, the desired conclu-
sion follows.

Mini-batch Hypergradient
Here we consider mini-batch training with a batch size of
B, and other symbols are of the same meanings as above.
Formally, the loss function at tth batch is

Lbatcht(wt−1) =
1

B

∑
(x,y)∈batcht

`(x,wt−1,y) (30)

+ 1batcht
(i) ∗ Nε

B
`(xi,wt−1,yi) (31)

+
1

2
wt−1

>wt−1, (32)

where the indicator function 1 is introduced to determine
whether the ith training point is in the batch.

As before, we have the initial conditions

∇0,i = 0, (33)
dv0

dεi
= 0. (34)

Then the recurrence formula
dvt

dεi
= pdvt−1

dεi
+Her

t−1∇t−1,i
+ λ∇t−1,i

+ 1batcht(i) ∗
d`(xi,wt−1,yi)

dwt−1
∗ N
B
,

(35)

∇t,i = ∇t−1,i − ηt
dvt
dεi

, (36)

where Her
t denote the Hessian of the regularizer-free batch

loss. Also, we could omit Her
t here.

References
Huang, G.; Liu, Z.; van der Maaten, L.; and Weinberger,
K. Q. 2017. Densely Connected Convolutional Networks.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition.
Lecun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE 86(11): 2278–2324.
Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; and
Chen, L.-C. 2019. MobileNetV2: Inverted Residuals and
Linear Bottlenecks. In CVPR.

