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ABSTRACT
Contemporary news reporting increasingly features multimedia
content, motivating research on multimedia event extraction. How-
ever, the task lacks annotated multimodal training data and artifi-
cially generated training data suffer from the distribution shift from
the real-world data. In this paper, we propose Cross-modality Aug-
mented Multimedia Event Learning (CAMEL), which successfully
utilizes artificially generated multimodal training data and achieves
state-of-the-art performance. Conditioned on unimodal training
data, we generate multimodal training data using off-the-shelf im-
age generators like Stable Diffusion [45] and image captioners like
BLIP [24]. In order to learn robust features that are effective across
domains, we devise an iterative and gradual training strategy. Sub-
stantial experiments show that CAMEL surpasses state-of-the-art
(SOTA) baselines on the M2E2 benchmark. On multimedia events
in particular, we outperform the prior SOTA by 4.2% F1 on event
mention identification and by 9.8% F1 on argument identification,
which demonstrates that CAMEL learns synergistic representations
from the two modalities.

CCS CONCEPTS
• Information systems→Multimedia information systems; •
Computing methodologies→ Structured outputs.
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According to the United Nations, more than 43,000 migrants, mostly from
sub-Saharan Africa [Arg: Origin], have reached [Trigger: Transport-Movement]
European shores [Arg: Destination] this year from Libya and a surge in
migrant crossings is expected this spring and summer. Nearly 1,200
migrants [Arg: Victim] have died [Trigger: Life-Die] at sea trying to cross the
Mediterranean [Arg: Place]. They also want for the EU to help support
economic development in communities along the border.

Event 1: Multimedia Event 2: Text-only Event 3: Image-only

Arg: Vehicle

Arg: Entity

Trigger: Transport-Movement Trigger: Contact-Meet

Arg: Entity Arg: Entity

Figure 1: Multimedia Event Extraction: three events are ex-
tracted from a multimedia news article. The multimedia
event (Green) Transport-Movement is triggered by the word
‘reached’ and the image on the left. The textual event Life-Die
(Orange) is triggered by the word ‘died’ only, and the visual
event Contact-Meet (Purple) is solely triggered by the image
on the right.

1 INTRODUCTION
As a fundamental research topic in the domain of information
extraction, event extraction aims to identify instances of events
and their arguments from unstructured data [7, 11, 20, 44, 65]. An
event refers to a specific incident that involves a change in state,
which are marked by triggers such as verbs. The arguments of an
event include the time and place of the event occurrence and its
participants, such as the initiator, the recipient, and the instrument.
Traditional research mostly focuses on a single modality, either
language [8, 17, 27, 34, 58, 75] or visual data [3, 4, 39, 68].

As digital media quickly evolve, news reports today frequently
present information with a combination of text and image, provid-
ing a more comprehensive view of events than text alone [9, 55].
This has spurred the emergence of the multimedia event extraction
(MEE) task [26], which aims to jointly extract both textual and vi-
sual events from multimedia news articles. Figure 1 shows an MEE
instance. Interestingly, not all events in a multimedia news article
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Figure 2: Examples of cross-modality augmented data. The red boxes indicate noise in the generated data, including inconsistency
with the event label, hallucination, and unnatural image artifacts.

are multimodal. For example, the event Transport-Movement is
described by both the text and the image modalities, whereas the
events Life-Die and Contact-Meet are contained respectively in
text and image only.

A major challenge posed by the MEE problem is the lack of
multimodal training data. TheM2E2 dataset provided by [26] is only
the test set. The labeled training datasets ACE2005 [52] and imSitu
[68] contain event annotations in a single modality only. Despite
recent progress [49, 74], transferring the knowledge learned from
unimodal annotations to multimodal test data remains a difficult
challenge.

After the explosive success of image generation networks such
as DALL-E 2 [41] and Stable Diffusion [45], a natural thought is to
perform cross-modality data augmentation in order to bridge the
modality gaps of MEE. That is, conditioned on existing unimodal
data, we can generate training data for the missing modality. After
that, we use the resultant multimodal data to train a network. As
the generative models capture world knowledge learned from ob-
serving correlative patterns among natural images and their textual
descriptions, it is probable that such knowledge can be distilled and
used to inform the task of event extraction.

However, a naive cross-modal data augmentation approach faces
two obstacles. First, it is difficult to precisely control the generative
models and produce data that are relevant to the event label and
free of hallucination. In Figure 2 (d), the generated image depicts
gum chewing but the event label is about talking on the phone. In

Figure 2 (h), the generated caption describes the people as hold-
ing signs, whereas the label is demonstrating. In Figure 2 (g), the
caption hallucinates a trailer that does not exist in the image. Sec-
ond, in the case of image generation, existing models occasionally
still generate images with significant deformation and unnatural
artifacts. For example, the soldier in Figure 2 (b) is shown with
three hands. For these reasons, the distribution of the generated
data likely diverges from that of real-world data. In practice, we
find that directly training on generated data results in performance
degradation (Table 2).

To fully utilize the power of generative models to augment exist-
ing unimodal training data, we propose Cross-modality Augmented
Multimedia Event Learning (CAMEL). After generating synthetic
multimodal data, CAMEL applies an iterative and gradual training
strategy that learns robust representations under noisy data and
distribution shifts. We train the networks using text coupled with
synthetic visual data and images coupled with synthetic textual
data. The network is gradually frozen from the bottom up during
training. Experimentally, we show that this training technique of-
fers substantial benefits over naive data augmentation. In particular,
on multimedia events, we outperform the previous best network,
UniCL [29], by 4.1% F1 on event mention identification and 9.8% on
argument role identification. In addition, the training strategy of
CAMEL works robustly under different choices of image generation
and captioning networks.

Our contributions can be summarized as follows:
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• For multimodal event extraction, CAMEL utilizes synthetic
data to fill in the missing modality in the unimodal ACE2005
and imSitu training datasets. To our best knowledge, this is
the first work that successfully demonstrates the use of bi-
directional cross-modality data augmentation (text-to-image
and image-to-text) for multimodal learning. This results in
superior data efficiency — with the unlabeled real-world
multimodal VOA dataset [26] removed from training, we
outperform previous work trained using VOA.

• We propose an incremental training strategy that handles
artifacts, hallucination, and distribution shifts present in ar-
tificially generated multimodal data and avoids performance
degradation caused by such noises.

• With CAMEL, we set a new state of the art on the M2E2
benchmark. On multimedia events in particular, we outper-
form the prior SOTA by 4.2% F1 on event mention identifica-
tion and by 9.8% F1 on argument identification, which indi-
cates that CAMEL learns synergistic representations from
multimodal data.

2 RELATEDWORK
2.1 Event Extraction
Event extraction [27] is a well-studied problem in information
extraction. Many early works [8, 17, 30, 34, 58, 63, 75] focus on
textual data and aim to identify event structures containing trigger
words and arguments from unstructured text. Traditionally, textual
event extraction is formulated as sequence labeling [12, 42, 61,
64]. More recent studies also formulate the problem as question
answering [13, 59, 75]. Similarly, visual event extraction [5, 39,
46, 47, 60, 68], also referred to as situation recognition or visual
semantic role labelling, aims to identify visual events and their
participants. The earlier CRF-based methods [67, 68] jointly predict
event type and the associated roles in one stage. [35] shows that
identifying the action and the argument roles in two stages with
separate networks to offer performance gains. More recent methods,
such as GSRFormer [3] and SituFormer [60], adopt the two-stage
approach.

Several studies investigate the use of multimodal data in uni-
modal event extraction. For example, [49] and [74] retrieve image
relevant to the events, which can assist with disambiguation. [25]
leverages image captions as distant supervision to interpret events
in the associated images. Although they operate on multimodal
data, these methods are aimed at events present in one modality.

Multimedia event extraction is proposed to extract events and
arguments from multimedia documents [2, 26]. [26] tackles image-
text documents while [2] focuses on video. WASE [26] uses weakly
supervised learning to encode structured representations from tex-
tual and visual data into a shared embedding space. [29] introduces
contrastive learning to bridge textual and visual modalities. Com-
pare to these research, our method is the first to directly learn
from synthetic multimodal training data, which are generated from
labeled unimodal data.

2.2 Cross-modality Generation
2.2.1 Cross-modality Generative Models. Text-to-image and image-
to-text generative models are gaining traction. Text-to-image mod-
els [6, 22, 41, 43, 70, 71] are developed to produce high-quality
images based on natural language descriptions. Early studies are
based on GANs [22, 43, 70], auto-regression [41, 71], and VAEs
[14, 51]. More recently, diffusion models have achieved impressive
results [6, 72]. Some, like GLIDE [38] and Imagen [48], generate
images at the pixel level directly; others, like DALL-E 2 [48] and
Stable Diffusion [45], operate on a low-dimensional latent space.
They have shown great promise in high-fidelity image generation.
Meanwhile, remarkable improvement has also been achieved in
the field of image-to-text generation (a.k.a. image captioning) with
models like BLIP [24], GiT [53], and so on [21, 23, 28, 54].

2.2.2 Cross-modality Generative Data Augmentation. Recent ad-
vances in generative models have propelled data augmentation re-
search to a new level. On textual tasks, one approach is to generate
additional textual training data [10, 16, 36, 37, 57, 62, 69]. Another,
multimodal approach is to generate visual data to complement ex-
isting textual data [31, 33, 66, 76], which improves performance on
textual tasks. For example, [31] generates visual data for machine
translation. [76] uses generated images to guide text generation
tasks, such as text completion, story generation, and concept-to-
text generation. In addition, [33, 66] integrate synthetic images into
language models to enhance the solution of plain language under-
standing tasks under low-resource settings. Unlike previous studies
that address unimodal problems by synthesizing multimodal data,
our work use the generated data to tackle multi-modal tasks. Doing
so places a stringent requirement on the quality of generated data,
as we need to train encoders in both modalities with the generated
data. This necessitates overcoming the domain shifts between gen-
erated and real data. To the best of our knowledge, this is the first
work to utilize bidirectional cross-modality data generation models
for multimodal tasks.

3 TASK DEFINITION
Let 𝐷 = ⟨𝑀, 𝑆⟩ represent a multimedia document, which con-
sists of a set of images 𝑀 = {𝑚1,𝑚2, . . .} and a set of sentences
𝑆 = {𝑠1, 𝑠2, . . .}. Each sentence 𝑠 consists of a sequence of words
[𝑤1,𝑤2, . . . ,𝑤𝐿]. The multimedia event extraction task contains
the following two components.

Event Mention Identification: Given a multimedia document
𝐷 , the first goal is to identify a set of event mentions from 𝐷 . An
event mention 𝑒 belongs to one of the predefined event types, 𝑦𝑒 ,
and is grounded on a trigger word𝑤 or a trigger image𝑚 or both.
A multimedia event contains both a trigger word 𝑤 and trigger
image𝑚, while a text-only or an image-only event only contains
one type of trigger.

Argument Role Identification: The purpose of argument role
identification is to extract, from the document 𝐷 , all participants
and attributes (i.e., arguments) of a given event 𝑒 . For each event
type, there is a predefined list of argument types. Each argument 𝑎
is classified into one argument type 𝑦𝑎 associated with the event
type. The argument is grounded on a textual span 𝑡 in a sentence
or one or more object bounding boxes in the image. The algorithm
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for argument role identification must also identify the position of
the textual span 𝑡 and the bounding boxes.

If 𝑒 is a multimedia event, it must be grounded on both a textual
trigger and a visual trigger. The arguments of multimedia events
could contain both textual spans and visual objects. For example, in
Figure 1, the multimedia event Transport: Movement is grounded
on both the trigger word “reached” and the trigger image on the
left. It also has two textual arguments and one visual argument.

4 APPROACH
The proposed approach, CAMEL, is trained with multimedia data
that are artificially generated from unimodal data (Section 4.1).
The cross-modality generative data augmentation approach can be
thought of as distilling event-related knowledge from large genera-
tive models to the event identification network.

We show an overview of CAMEL in Figure 3. In a dual-encoder
architecture, CAMEL first extracts features from the two modalities
separately using unimodal encoders. To perform feature fusion and
allow the network to pick relevant features among possibly noisy
input, we design a modality-shared adapter module that perform
cross-attention between the modalities. Further, to cope with possi-
ble distribution shifts and learn robust and generalizable features,
we employ an iterative and gradual training strategy (Section 4.4).
After these steps, we feed the resultant representation to domain-
specific classifiers to identify the event mentions and arguments.

4.1 Cross-modality Generative Data
Augmentation

A major obstacle for multimedia event extraction is the lack of mul-
timodal training data. In the commonly used setup, first proposed by
[26], the training data contains event annotations on text (ACE2005
[52]) and event annotations on images (imSitu [68]). The unlabeled
VOA [26] dataset is often used as auxiliary training data;it contains
parallel image-text data but no event annotations.

To tackle this problem, we utilize large text-to-image and image-
to-text generative models to perform cross-modality generative
data augmentation. Specifically, to augment the labeled textual
data, we generate images using a text-to-image model. In addition,
to augment labeled image data, we use an image-to-text model
to generate image captions. This procedure yields labeled parallel
image-text data. For most of our experiments, we use Stable Diffu-
sion v2.1 [45] for image generation and BLIP [24] for captioning.
However, CAMEL can be applied to a range of generative models
with little loss in performance, as demonstrated in Section 5.3.

Visual Data Augmentation.We perform visual data augmenta-
tion on the labelled textual dataset, ACE2005, which consists of
textual news reports. In order to extract textual spans that are rel-
evant to the event, we utilize the existing annotations of event
arguments and trigger words. For each event, we find the shortest
continuous textual span that include all arguments and the trig-
ger word, and use that as the textual input to image generation
networks. We show one example of the extracted text span in the
purple-lined box in Figure 3.

The image generation process is stochastic. Thus, we generate
several images for each textual event in ACE2005 to cover different

possible visual appearances and spatial arrangements. The number
of images is a hyperparameter, which we set to four.

Textual Data Augmentation. To augment the visual dataset im-
Situ with the textual modality, we utilize the off-the-shelf image-
to-text model to generate image captions. To generate diverse and
detailed captions, we adopt nucleus sampling [15]. At each time
step, the technique iteratively adds the most probable word to the
candidate list until the total probability of the candidates exceeds a
pre-defined probability. After that, the probabilities of candidates
are normalized and one word is sampled accordingly. We generate
one caption for each image in imSitu.

4.2 Model Architecture

Feature Extractors. CAMEL utilizes two pretrained Transformer
encoders to extract unimodal features separately. Using the hid-
den states of the last network layer, the text encoder obtains a
𝑑-dimensional vector representation ℎtext

𝑖
for each word𝑤𝑖 . Simi-

larly, each patch of the image is encoded into a𝑑-dimensional vector
ℎ
img
𝑖

. We denote the set of all text representations as𝐻𝑇 and the set
of all visual representations as 𝐻𝑉 . We also prepend CLS tokens to
the input of the two encoders. The corresponding encodings ℎtextCLS
and ℎimg

CLS can be understood as representing information from the
entire sentence or image.

Feature Fusion. We devise a cross-attention network module,
commonly used in Transformer networks, to fuse textual and visual
features. The network consists of multi-head cross attention, layer
normalization, and some linear layers. The detailed architecture is
shown in Figure 4.

We refer to this module as the Adapter network. For simplicity,
we denote the input to the Adapter as the query vector 𝑞, the key
matrix 𝐾 , and the value matrix 𝑉 . The overall network is denoted
as the function

𝑔 = Adapter(𝑞, 𝐾,𝑉 ) . (1)
We make repeated use of the same Adapter module with in the
identification of event mentions and arguments, but change the
𝑞, 𝐾 , and 𝑉 depending on the exact task. Most parameters are
shared across tasks. However, parameters in the linear task-specific
projection layer are specific to the four tasks (textual event mention,
textual argument role, visual event mention, visual argument role).

The design of the Adaptermodule is motivated by the characteris-
tics of multimedia documents, which usually do not explicit indicate
the correspondence between images and the main text. When we
try to identify a textual event and its arguments, we do not know
which image is relevant to this event. The cross-attention mecha-
nism allows the network to distinguish relevant images. Similarly,
when extracting visual events, the network relies on the Adapter
to select relevant portions of the text to facilitate its prediction.

Textual Event Extraction. The first sub-problem in textual event
extraction is to identify the trigger word. This is word-level classi-
fication. The trigger word should be classified into the exact event
type, whereas other words should be classified as non-triggers.

For the classification of the 𝑖th word, we first take its encod-
ing from the textual encoder, ℎtext

𝑖
. After that, we feed ℎtext

𝑖
to the
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Even as the secretary of homeland security was putting his
people on high alert last month, a 30-foot Cuban patrol boat 
[Arg: Vehicle] with four heavily armed men [Arg: Artifact]

landed [Trigger: Movement-Transport] on American 
shores [Arg: Destination] , utterly undetected …
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Figure 3: An overview of the CAMEL network architecture and its training strategy
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Figure 4: The architecture of the Adapter network.

Adapter network as the query vector. We use the CLS token encod-
ings of all images in the entire multimedia document, denoted as
𝐻all-img, as 𝐾 and 𝑉 in cross attention.

𝑔text𝑖 = Adapter(ℎtext𝑖 , 𝐻all-img, 𝐻all-img) . (2)

After that, we concatenate ℎtext
𝑖

and 𝑔text
𝑖

and feed them through a
linear classifier. The loss is cross-entropy.

The second sub-problem is the identification of event arguments.
Following the convention in the literature [26, 29], we use the
ground-truth list of entities for both training and inference. Each
entity is a textual span that describes a person, an organization, a
location and so on. We take the encoding of the first word in that
entity as the entity feature ℎtext-ent, and feed it to the Adapter.

𝑔text-ent𝑖 = Adapter(ℎtext-ent, 𝐻all-img, 𝐻all-img) . (3)

Similarly, we concatenate ℎtext-ent, 𝑔text-ent
𝑖

, and the textual encod-
ing of the trigger word, and feed them through a linear classifier,

which classifies it into the argument classes. Though the types of
valid arguments change depending on the event, here we do not
exploit this fact for further performance improvement.

During training, if the ACE2005 sentence contains an event, we
generate several positive images from the event text prompt (see
Section 4.1). In addition, we also include some negative images
generated for other events into 𝐻all-img. This trains the network to
distinguish between relevant images and irrelevant images. How-
ever, if the ACE2005 sentence does not contain any event, we would
not be able to extract the event prompt using the method in Section
4.1. Instead, we randomly sample generated images from other text
and use their encodings as 𝐻all-img.

Visual Event Extraction. Similar to the textual modality, visual
event extraction has two sub-problems, the classification of images
into event types or non-events, and identification of objects as event
arguments. For image event classification, we take the encoding
of the image CLS token, ℎimg

CLS. Using the Adapter network again,
we acquire an aggregated feature from the text modality, which we
denote as 𝑔img,

𝑔img = Adapter(ℎimg
CLS, 𝐻

all-text, 𝐻all-text), (4)

where the matrix 𝐻all-text contains the encoding vectors of the
textual CLS token encodings of all sentences in the same batch. We
feed the concatenation of ℎimg

CLS and 𝑔
img to a linear classifier.

For the second sub-problem, event argument identification, we
first extract all objects in an image using an off-the-shelf object de-
tector. For each object bounding box, we identify the three patches
that contain its top-left corner, its center, and its bottom-right cor-
ner respectively. After that, we take the average of the three patch
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Figure 5: Extracting features for objects in images.

encodings, which we denote as ℎimg-obj. The object feature extrac-
tion process is illustrated in Figure 5. Once again, we apply feature
fusion using the adapter network to obtain 𝑔img-obj,

𝑔img-obj = Adapter(ℎimg-obj, 𝐻all-text, 𝐻all-text) . (5)

Finally, we concatenate three feature vectors, ℎimg-obj, 𝑔img-obj, and
ℎimg into a single vector and feed it through a linear classifier.

4.3 Multimedia Event Extraction
For multimedia events, we need to resolve the coreference between
text events and visual events. Given a multimedia document, we
compute the similarity of each sentence-image pair. Following [26,
29], we treat a textual event and a visual event as the same event
if and only if they have the same event type and the similarity
between the sentence and image is greater than a threshold. We
calculate the cosine similarity of the sentence-image pair using the
CLIP model [40]. The multimedia event inherits all textual event
arguments and visual event arguments as its own arguments.

4.4 Training Strategy
Robust representation learning is key to the success of cross-
modality data augmentation and multimedia event extraction. As
discussed in the introduction and shown in Figure 1, the auto-
matically generated multimodal data often contain noise, such as
inconsistency with the event label, hallucination, unnatural image
artifacts, and so on. The discrepancy between the generated data
distribution and the real-world data distribution may cause general-
ization difficulties. In addition, the M2E2 task itself poses a transfer
learning problem because the training data, ACE2005 and imSitu,
have different distributions from the test set. Hence, we need to
learn robust feature representations that generalize well.

We propose an iterative and gradual training strategy, shown in
the right column of Figure 3. We divide the training into the three
stages. In the first stage, we first train on visual event mention, fol-
lowed by textual event mention. The separation is a simple method
to alleviate the well-known problem that different modalities learn
at different speeds [56]. In the first stage, all network parameters are
trained except the feature extractor corresponding to the generated
synthetic data. For example, when training on real text data and
generated image data, the text encoder is trainable but the image

encoder is frozen. The rationale is to prevent the gigantic feature
extractors (with hundreds of millions of parameters) from overfit-
ting the low-level feature distributions of the augmented training
data, which are likely idiosyncratic (e.g., soldiers with three hands)
and not generalizable. However, we postulate that the high-level
features extracted by the encoders are not heavily affected by shifts
in lower-level feature distributions, so we train all the parameters
after the encoders.

In the second stage, we again train the network on visual event
mention identification, followed by textual event mention identifica-
tion. Both encoders are frozen and only the Adapter and classifiers
are trained. The design rationale is to allow visual classifiers to
adapt to changes in the textual encoder in the first stage, and vice
versa. In the third stage, we freeze all network parameters but
finetune the visual event mention classifier using balanced event
data. This technique is to mitigate the negative effects of imbal-
anced class proportions in the visual event mentions [19]. Finally,
we separately finetune the visual encoder for visual event argu-
ment identification, and fintune the text encoder for textual event
argument identification. This creates two models specialized for
argument identification.

5 EXPERIMENTS
In this section, we extensively evaluate CAMEL by comparing
against existing SOTA approaches, against ablated version of
CAMEL, and against different choices for the image generators
and image captioning networks.

5.1 Experimental Setting

Datasets and Evaluation.We evaluate on the M2E2 benchmark, a
large-scale multimedia event extraction dataset that with the 8 types
of events and 15 types of arguments. It contains 245 multimedia
documents with 6,167 sentences and 1,014 images. There are 1,297
textual events and 391 visual events, among of which 192 textual
event mentions and 203 visual event mentions are aligned into 309
multimedia events.

Since M2E2 does not provide training data, we follow the previ-
ous work [26, 29] to use the ACE2005 [52] and imSitu [68] (with
the grounding information from [39]) for training. ACE2005 is a
text dataset annotated with 33 event types, which contains the 8
specific types in M2E2. The image dataset imSitu is annotated with
504 activity verbs and 1,788 semantic roles. To utilize this dataset
for 8-class classification, we follow [26] and map the 98 activity
verbs to the 8 event types of M2E2. Following the previous works
on event extraction [26, 30, 63], we use precision (P), recall (R), and
F1 score (F1) as the default evaluation metrics.

Baselines. Following [29], we compare CAMEL with eight base-
lines for multimodal or unimodal event extraction.

Multimodal event extraction techniques can extract both tex-
tual events and visual events. WASE [26] first trains on different
modalities independently and uses weakly supervised learning to
align the two modalities. Two variations exist: WASEatt locates the
visual arguments using an attention heat map, whereas WASEobj
leverages a object detection model. Flatatt and Flatobj [26] are the
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simplified versions of WASEatt and WASEobj respectively; they re-
move the graph convolution networks and concatenate features
of different modalities for classification. UniCL [29] is the state-of-
the-art on M2E2, which incorporates visual knowledge into textual
event extraction but uses two separate modality-specific models
for event extraction.

Unimodal event extraction methods only extract textual or visual
events but not both. JMEE [30] is a state-of-the-art textual event
extraction technique which utilizes an attention-based Graph Con-
volution Network. GAIL [73] is a reinforcement learningmethod for
textual event extraction where rewards are estimated by a Genera-
tive Adversarial Network. VAD [74] augments textual documents
with images retrieved from the Internet to improve textual event
extraction. Clip-Event [25] utilizes the pretrained CLIP network
to perform visual event extraction. WASE-T and WASE-V are the
WASE model which trained on ACE2005 and imSitu only. The latter
has two further varations WASE-Vatt and WASE-Vobj [26].

Hyperparameters. During cross-modality data augmentation,
for each event in ACE20005, we perform one-time generation of 4
images at 512×512 resolution with 100 denoising steps. In addition,
we use nucleus (top-𝑝) sampling [15] for image captioning with a
probability threshold 𝑝 of 0.9. We generate one caption for each
original image.

For fair comparisons with the SOTA baseline [29], we use the
same 12-layer BERTLarge as the text encoder, and the same 12-layer
Transformer CLIP model [18] as the visual encoder with 16x16
patch size. To detect objects for visual argument roles, we leverage
the pretrained YOLOv8 [50] as the object detector.

When training on visual event extraction, our batch size is set
to 64 and learning rate to 10−4. For textual event extraction, the
batch size is set to 10 and learning rate set to 10−4. We employ the
AdamW optimizer [32] with 10−2 weight decay coefficient and the
cosine learning rate schedule. In the first round of training, we train
on the visual modality for 10 epochs and on the textual modality
for 5 epochs. In the remainder of training, only one epoch is used
for any modality. The maximum text input length is 200.

5.2 Main Results
Table 1 presents the performance of our proposed method CAMEL
and several state-of-the-art baselines. The results show CAMEL
significantly improves the event extraction performance over base-
line methods. On textual events, we surpass UniCL by 1.7% F1 for
event mention and 0.4% F1 for argument role. On visual events,
we surpass UniCL by 0.9% F1 for event mention and 9.2% F1 for
argument role. We speculate that the relatively small improvements
for textual argument roles is that some textual arguments are pro-
nouns (e.g., she) or proper noun (e.g., Saudi Arabia), which are not
straightforward to visualize by the image generators.

Interestingly, the biggest performance boost appears on multi-
media event extraction. We outperform the prior SOTA by 4.2%
F1 on event mention identification and by 9.8% F1 on argument
identification. This suggests CAMEL effectively learns synergistic
representations from the two modalities.

Table 1: Main results on event mention and argument role
extraction for three types of events.

Event Mention Argument Role
Event Method P R F1 P R F1

Textual

JMEE [30] 42.5 58.2 48.7 22.9 28.3 25.3
GAIL [73] 43.4 53.5 47.9 23.6 29.2 26.1
VAD [74] 34.8 64.4 45.2 23.1 27.5 25.1
Flat [26] 34.2 63.2 44.4 20.1 27.1 23.1

WASE-T [26] 42.3 58.4 48.2 21.4 30.1 24.9
WASEatt [26] 37.6 66.8 48.1 27.5 33.2 30.1
WASEobj [26] 42.8 61.9 50.6 23.5 30.3 26.4
UniCL [29] 49.1 59.2 53.7 27.8 34.3 30.7

CAMEL (Ours) 45.1 71.8 55.4 24.8 41.8 31.1

Visual

Flat[26] 27.1 57.3 36.7 4.3 8.9 5.8
WASE-Vatt [26] 29.7 61.9 40.1 9.1 10.2 9.6
WASE-Vobj [26] 28.6 59.2 38.7 13.3 9.8 11.2
WASEatt [26] 32.3 63.4 42.8 9.7 11.1 10.3
WASEobj [26] 43.1 59.2 49.9 14.5 10.1 11.9

CLIP-Event [25] 41.3 72.8 52.7 21.1 13.1 17.1
UniCL [29] 54.6 60.9 57.6 16.9 13.8 15.2

CAMEL (Ours) 52.1 66.8 58.5 21.4 28.4 24.4

Multi.

Flat [26] 33.9 59.8 42.2 12.9 17.6 14.9
WASEatt [26] 38.2 67.1 49.1 18.6 21.6 19.9
WASEobj [26] 43.0 62.1 50.8 19.5 18.9 19.2
UniCL [29] 44.1 67.7 53.4 24.3 22.6 23.4

CAMEL (Ours) 55.6 59.5 57.5 31.4 35.1 33.2

5.3 Ablation Study
In order to investigate the effects of different components in
CAMEL, we create ablated systems by removing each of the compo-
nents. First, we create two variations in the training strategy. In the
combined training baseline, we merge the textual event task and
the visual event task as one training set and train the model in one
stage without freezing any model parameters. In the one-round
training baseline, we separate the training of the textual event
task and the visual event task. We freeze the visual encoder when
training on real textual data and generated visual data, and freeze
the textual encoder when training on real textual data and gener-
ated visual data. However, we only apply one stage of training and
remove the two later stages.

Next, in the w/o augmentation baseline, we remove all gener-
ated multimodal training data and train the network on unimodal
data alone. For example, in textual event mention identification, we
train the textual encoder and the classifier; the Adapter is removed
as well. Finally, thew/o Adapter ablation retains multimodal train-
ing data but removes the Adapter network. The cross-attention
scores are computed as cosine similarity. For example, in text men-
tion identification, we compute the cosine similarity between each
word ℎtext

𝑖
and the visual image encoding ℎimg

CLS. The similarities
scores are normalized and used to compute a convex combination
of image features, denoted as 𝑔text

𝑖
. The concatenation of ℎtext

𝑖
and

𝑔text
𝑖

is used for classification.
The results are shown in Table 2. The most interesting finding

is that the w/o augmentation, unimodal baseline outperforms the
simplistic combined training strategy by large margins (up to 12.9%
F1 on multimedia event mentions). This clearly demonstrates the
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Table 2: Ablation results of CAMEL on the M2E2 dataset.

Textual Events Visual Events Multimedia Events
Event Mention Argument Role Event Mention Argument Role Event Mention Argument Role

Method P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

CAMEL 45.1 71.8 55.4 24.8 41.8 31.1 52.1 66.8 58.5 21.4 28.4 24.4 55.6 59.5 57.5 31.4 35.1 33.2
combined training 41.9 69.7 48.3 22.0 34.5 26.8 60.1 40.4 48.3 24.8 17.7 20.6 53.2 32.0 40.0 27.4 15.8 20.0
one-round training 45.1 70.6 55.0 22.4 40.6 30.6 66.5 36.6 47.2 24.1 13.5 17.3 55.9 33.6 42.0 31.5 19.2 23.8
w/o augmentation 40.0 73.2 51.7 25.7 30.5 27.9 48.9 62.9 55.0 19.3 25.9 22.1 51.5 54.4 52.9 31.6 26.4 28.8

w/o adapter 43.7 70.8 54.0 25.3 36.0 29.7 45.5 68.0 54.5 19.3 30.5 23.6 49.8 57.0 53.2 30.0 30.9 30.4

Table 3: Performance of CAMEL with different image captioners and image generators.

Textual Events Visual Events Multimedia Events
Event Mention Argument Role Event Mention Argument Role Event Mention Argument Role

Method P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

CAMEL 45.1 71.8 55.4 24.8 41.8 31.1 52.1 66.8 58.5 21.4 28.4 24.4 55.6 59.5 57.5 31.4 35.1 33.2

Replacing the Image Captioner with ...
BLIPv2 [23] 44.4 71.7 54.8 25.2 36.2 29.7 49.2 65.7 56.3 19.3 26.8 22.4 54.1 57.9 55.9 29.5 30.3 29.9
GIT [53] 44.0 71.9 54.6 25.8 38.5 30.9 49.9 65.7 56.7 19.6 28.2 23.1 53.5 57.0 55.2 29.8 31.9 30.8

VIT-GPT2 [21] 44.8 71.1 55.0 26.2 38.9 31.3 49.1 65.7 56.2 19.5 28.1 23.0 54.2 57.9 56.0 31.9 31.9 31.9
OFA [54] 44.8 71.3 55.0 26.1 36.3 30.4 49.8 65.7 56.7 19.7 28.5 23.3 54.6 57.9 56.2 30.4 30.8 30.6

Replacing the Image Generator with ...
SDv2 [45] 45.4 72.0 55.7 25.0 40.4 30.9 49.6 66.0 56.6 18.7 26.2 21.8 54.7 58.9 56.7 30.1 31.8 30.9
SDv1.5 [45] 45.4 71.6 55.6 24.6 40.2 30.6 50.1 67.3 57.4 20.1 28.5 23.6 54.9 58.3 56.5 31.2 32.3 31.8

Kandinsky [1] 44.8 72.3 55.4 24.0 41.3 30.3 50.4 66.2 57.2 19.9 27.2 23.0 56.3 59.5 57.9 29.8 34.2 31.9

UniCL [29] 49.1 59.2 53.7 27.8 34.3 30.7 54.6 60.9 57.6 16.9 13.8 15.2 44.1 67.7 53.4 24.3 22.6 23.4

difficulties in training on generated multimodal data and the need
for a carefully devised training strategy. Second, the one-round
training strategy still falls behind the full-fledged CAMEL, showing
the three-stage strategy to be effective. Additionally, the full-fledged
CAMEL appears superior to unimodal training, surpassing by 4.6%
and 4.4% onmultimedia eventmention and argument role extraction
respectively. Finally, CAMEL outperforms the network without
Adapter, indicating the advantage of the Adapter design.

5.4 Choice of Generative Models
We test if CAMEL can work with other large pretrained generative
models. By default, CAMEL leverages Stable Diffusion v2.1 [45]
as the image generator and BLIP [24] as image captioning model.
In this experiment, we test out three different image generators,
including Stable Diffusion v1.5 and v2 (SDv1.5 and SDv2) and the
Kandinsky model [1]. For image captioning, we attempt BLIPv2
[23], GIT [53], OFA [54], and VIT-GPT2 [21].

Table 3 shows the results. We observe that, while the default
settings works well, it often does not achieve the best F1 scores com-
pared to other combinations. In addition, manymodel combinations
outperform UniCL, the previous SOTA model. This demonstrates
the generality of the CAMEL technique.

6 CONCLUSIONS
In this paper, we study the problem of multimedia event extraction
and investigate the use of image generative networks and image

captioning networks to complement existing unimodal training
data. The automatically generated multimodal data often contain
noise, such as inconsistency with the event label, hallucination,
unnatural image artifacts, creating challenges for training. We pro-
pose a network, CAMEL, and a specialized training strategy to cope
with augmented multimodal training data. CAMEL surpasses he
prior SOTA by 4.2% F1 on event mention identification and by 9.8%
F1 on argument identification. An ablation study shows that the
design of network structure, the shared adapter, and the iterative
training strategy in our method significantly improve performance.
We also test the generality of the benefits of our approach to other
cross-modality generative models.
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