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Insights from Optimization Trajectories of Deep Learning

• Optimizing the loss function ℒ(𝑤) over network parameters 𝑤

𝑤 ← 𝑤 − 𝜂
𝑑ℒ 𝑤

𝑑𝑤

ℒ 𝑤 =෍

𝑖

ℓ(𝑥 𝑖 , 𝑦 𝑖 , 𝑤)

• The simple method above (with some additional details) achieves surprisingly 

good results. 

• How is this possible? 

– What about non-convex losses (multiple local minima)?

Summation over 
training data points
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The Optimization Trajectory of Deep Learning

• Red dots: the iterates of SGD after each tenth epoch. 

• Blue dots: locations of nearby "bad" minima with perfect train accuracy but poor generalization. 

• The final iterate of SGD (black star) also achieves perfect train accuracy, but with 98.5% test accuracy. Miraculously, SGD always finds 
its way through a landscape full of bad minima, and lands at a minimizer with excellent generalization.

W. Ronny Huang, Zeyad Emam, Micah Goldblum, Liam Fowl, Justin K. Terry, Furong Huang, Tom Goldstein. Understanding Generalization through 
Visualizations. 2019
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Utilize Neighborhood Information? Initialization Matters.

• Many neural recommender systems are outperformed by 
simple nearest neighbor methods [1].

[1] Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. Are We Really Making Much 
Progress? A Worrying Analysis of Recent Neural Recommendation Approaches. RecSys 2019. 

• Neighborhood-informed initialization boosts 
multiple deep learning methods above nearest 
neighbors and other simple baselines [2].

[2] Yinan Zhang, Boyang Li, Yong Liu, Hao Wang, Chunyan Miao. Initialization Matters: Regularizing Manifold-
informed Initialization for Neural Recommendation Systems. KDD 2021. 
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Which training points affect predictions? Trajectory Matters. 

Training data

Loss surface

Optimization 
Trajectory

Network 
Weights

Predictions

• Previous works like [3] do not model the change 
in the entire optimization trajectory.

[3] Koh, P. W. and Liang, P. Understanding black-box predictions via influence functions. ICML 2017.

𝑥 𝑖 , 𝑦 𝑖

෍

𝑖

ℓ(𝑥 𝑖 , 𝑦 𝑖 , 𝑤)
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Remove?

Local Optimum 1

Local Optimum 2

A small change in 
data weight
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Which training points affect predictions? Trajectory Matters. 
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• Previous works like [3] do not model the change 
in the entire optimization trajectory.

• In [4], we explicitly consider the change in the 
trajectory and propose an approximation 
algorithm with bounded and diminishing errors. 

[3] Koh, P. W. and Liang, P. Understanding black-box predictions via influence functions. ICML 2017.

[4] Yuanyuan Chen, Boyang Li, Han Yu, Pengcheng Wu, and Chunyan Miao. HyDRA: Hypergradient
Data Relevance Analysis for Interpreting Deep Neural Networks. AAAI 2021.
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Multiple Losses? Their Interaction Matters. 

• In this common transfer learning setup, 
the domain discriminator encourages the 
source-domain and target-domain 
features to be similar.

• However, this can create difficulties in 
optimization.

• We encourage the gradients of different 
losses to point in the same direction, 
which improves transfer. 

[5] Xu Guo, Boyang Li, Han Yu, and Chunyan Miao. Latent-Optimized Adversarial Neural 
Transfer for Sarcasm Detection. NAACL 2021.
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Multiple Losses? Their Interaction Matters. 

• First, take a GD step on 𝐿𝑑 with latent representation 𝑧𝑠
and 𝑧𝑡

𝑧𝑠
′ = 𝑧𝑠 − 𝛾

𝑑𝐿𝑑
𝑑𝑧𝑠

, 𝑧𝑡
′ = 𝑧𝑡 − 𝛾

𝑑𝐿𝑑
𝑑𝑧𝑡

• After that, optimize domain-specific losses on 𝑧𝑠
′ and 𝑧𝑡

′

ℒ = 𝐿𝑠 𝑧𝑠
′ + 𝐿𝑡 𝑧𝑡

′ + 𝐿𝑑(𝑧𝑠, 𝑧𝑡)

• Why does this work? By first-order Taylor expansion

𝐿𝑠 𝑧𝑠
′ ≈ 𝐿𝑠 𝑧𝑠 +

𝑑𝐿𝑠 𝑧𝑠
𝑑𝑧𝑠

−𝛾
𝑑𝐿𝑑
𝑑𝑧𝑠

• Minimizing 𝐿𝑠 𝑧𝑠
′ is to encourage 

𝑑𝐿𝑠 𝑧𝑠

𝑑𝑧𝑠
and 

𝑑𝐿𝑑

𝑑𝑧𝑠
to have 

the similar directions. 

[5] Xu Guo, Boyang Li, Han Yu, and Chunyan Miao. Latent-Optimized Adversarial Neural 
Transfer for Sarcasm Detection. NAACL 2021.


